1 - 12 |
Fuel cells, hydrogen and energy supply in Australia Dicks AL, da Costa JCD, Simpson A, McLellan B |
13 - 22 |
Modelling of hydrogen infrastructure for vehicle refuelling in London Joffe D, Hart D, Bauen A |
23 - 26 |
Formulating liquid hydrocarbon fuels for SOFCs Saunders GJ, Preece J, Kendall K |
27 - 34 |
Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications Lampert J |
35 - 40 |
Injection moulded low cost bipolar plates for PEM fuel cells Heinzel A, Mahlendorf F, Niemzig O, Kreuz C |
41 - 48 |
Advanced materials for improved PEMFC performance and life Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME |
49 - 56 |
Conceptual study of a 250 kW planar SOFC system for CHP application Fontell E, Kivisaari T, Christiansen N, Hansen JB, Palsson J |
57 - 61 |
Fuel cells: a survey of current developments Cropper MAJ, Geiger S, Jollie DM |
62 - 68 |
Demonstration of a residential CHP system based on PEM fuel cells Gigliucci G, Petruzzi L, Cerelli E, Garzisi A, La Mendola A |
69 - 72 |
High efficiency and low carbon monoxide micro-scale methanol processors Holladay JD, Jones EO, Dagle RA, Xia GG, Cao C, Wang Y |
73 - 78 |
Development of a planar micro fuel cell with thin film and micro patterning technologies Hahn R, Wagner S, Schmitz A, Reichl H |
79 - 85 |
US distributed generation fuel cell program Williams MC, Strakey JP, Singhal SC |
86 - 90 |
Spinning-out a fuel cell company from a UK University - 2 years of progress at Ceres Power Bance P, Brandon NP, Girvan B, Holbeche P, O'Dea S, Steele BCH |
91 - 95 |
Reaction study of auto thermal steam reforming of methanol to hydrogen using a novel nano CuZnAl-catalyst Yong ST, Hidajat K, Kawi S |
96 - 106 |
Modelling system efficiencies and costs of two biomass-fuelled SOFC systems Omosun AO, Bauen A, Brandon NP, Adjiman CS, Hart D |
107 - 111 |
Ionic activators in the electrolytic production of hydrogen - cost reduction-analysis of the cathode Kaninski MPM, Maksic AD, Stojic DL, Miljanic SS |
112 - 119 |
Coupling of a 2.5 kW steam reformer with a 1 kW(e1) PEM fuel cell Mathiak J, Heinzel A, Roes J, Kalk T, Kraus H, Brandt H |
120 - 126 |
Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies Lunghi P, Bove R, Desideri U |
127 - 141 |
Process flow model of solid oxide fuel cell system supplied with sewage biogas Van herle J, Marechal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D |
142 - 146 |
Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms Mohamed I, Jenkins N |
147 - 154 |
Influence of cathode gas diffusion media on the performance of the PEMFCs Prasanna M, Ha HY, Cho EA, Hong SA, Oh IH |
155 - 161 |
Novel gas diffusion layer with water management function for PEMFC Chen J, Matsuura T, Hori M |
162 - 168 |
Corrosion-resistant component for PEM fuel cells Lee SJ, Huang CH, Lai JJ, Chen YP |
169 - 174 |
A potential anode material for the direct alcohol fuel cell Sen Gupta S, Mahapatra SS, Datta J |
175 - 181 |
Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells Tuber K, Oedegaard A, Hermann M, Hebling C |
182 - 187 |
Effect of PTFE contents in the gas diffusion media on the performance of PEMFC Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY, Kim CS |
188 - 193 |
Performance of polypyrrole-impregnated composite electrode for unitized regenerative fuel cell Lee HY, Kim JY, Park JH, Joe YG, Lee TH |
194 - 199 |
An analytical approach on effect of diffusion layer on ORR for PEMFCs Mirzazadeh J, Saievar-Iranizad E, Nahavandi L |
200 - 206 |
A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC Lee HK, Park JH, Kim DY, Lee TH |
207 - 212 |
Analysis of DMFC/battery hybrid power system for portable applications Lee BD, Jung DH, Ko YH |
213 - 216 |
A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding Hakenjos A, Muenter H, Wittstadt U, Hebling C |
217 - 223 |
Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P |
224 - 230 |
Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane Douvarzides S, Coutelieris F, Tsiakaras P |
231 - 236 |
A SOFC based on a co-ionic electrolyte Demin A, Tsiakaras P, Gorbova E, Hramova S |
237 - 242 |
The influence of powders on the final properties of the porous components for MCFC application Sabattini A, Bergaglio E |
243 - 246 |
CFD to predict temperature profile for scale up of micro-tubular SOFC stacks Lockett M, Simmons MJH, Kendall K |
247 - 250 |
Effect of annealing on the electrical conductivity of theY(2)O(3)-ZrO2 system Hattori M, Takeda Y, Lee JH, Ohara S, Mukai K, Fukui T, Takahashi S, Sakaki Y, Nakanishi A |
251 - 255 |
Performance of NiO/MgFe2O4 composite cathode for a molten carbonate fuel cell Okawa H, Lee JH, Hotta T, Ohara S, Takahashi S, Shibahashi T, Yamamasu Y |
256 - 260 |
Optimization of the electrolyte composition in a (Li0.52Na0.48)(2-2x)AE(x)CO(3) (AE = Ca and Ba) molten carbonate fuel cell Tanimoto K, Kojima T, Yanagida M, Nomura K, Miyazaki Y |
261 - 269 |
Prevention of SOFC cathode degradation in contact with Cr-containing alloy Fujita K, Ogasawara K, Matsuzaki Y, Sakurai T |
270 - 277 |
Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects Fujita K, Hashimoto T, Ogasawara K, Kameda H, Matsuzaki Y, Sakurai T |
278 - 284 |
Evaluation of residual stresses in a SOFC stack Yakabe H, Baba Y, Sakurai T, Satoh M, Hirosawa I, Yoda Y |
285 - 288 |
Carbon deposition behaviour on Ni-ScSZ anodes for internal reforming solid oxide fuel cells Gunji A, Wen C, Otomo J, Kobayashi T, Ukai K, Mizutani Y, Takahashi H |
289 - 292 |
The high temperature proton conductor BaZr0.4Ce0.4In0.2O3-alpha Shimada T, Wen C, Taniguchi N, Otomo J, Takahashi H |
293 - 298 |
Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction - Oxidation behavior of alloys in methane fuel Horita T, Xiong YP, Kishimoto H, Yamaji K, Sakai N, Yokokawa H |
299 - 303 |
Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs Horita T, Yamaji K, Kato T, Sakai N, Yokokawa H |
304 - 312 |
Generalized model of planar SOFC repeat element for design optimization Larrain D, Van Herle J, Marechal F, Favrat D |
313 - 319 |
CFD simulation tool for solid oxide fuel cells Autissier N, Larrain D, Van Herle J, Favrat D |
320 - 326 |
Optimisation of an SOFC/GT system with CO2-capture Moller BF, Arriagada J, Assadi M, Potts I |
327 - 339 |
Scenarios of solid oxide fuel cell introduction into Japanese society Fukushima Y, Shimada M, Kraines S, Hirao M, Koyama M |
340 - 350 |
Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt Hedstrom L, Wallmark C, Alvfors P, Rissanen M, Stridh B, Ekman J |
351 - 360 |
An example of innovative application in fuel cell system development: CO2 segregation using Molten Carbonate Fuel Cells Lusardi A, Bosio B, Arato E |