187 - 190 |
Irreversible capacity loss of graphite electrode in lithium-ion batteries Chang YQ, Li H, Wu L, Lu TH |
191 - 194 |
Kinetic analysis of capacity fade in lithium/coke half-cells Avery NR, Black KJ |
195 - 200 |
Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries Wilson AM, Zank G, Eguchi K, Xing W, Dahn JR |
201 - 203 |
Hysteresis observed in quasi open-circuit voltage measurements of lithium insertion in hydrogen-containing carbons Zheng T, Dahn JR |
204 - 207 |
Graphite multilayer thin films: a new anode material for Li-ion microbatteries synthesis and characterization Hess M, Lebraud E, Levasseur A |
208 - 211 |
X-ray photoelectron spectroscopy analyses of lithium intercalation and alloying reactions on graphite electrodes Momose H, Honbo H, Takeuchi S, Nishimura K, Horiba T, Muranaka Y, Kozono Y, Miyadera H |
212 - 215 |
Low-crystallized carbon materials for lithium-ion secondary batteries Higuchi H, Uenae K, Kawakami A |
216 - 220 |
Intercalation of lithium into natural graphite flakes and heat-treated polyimide films in ether-type solvents by chemical method Abe T, Mizutani Y, Tabuchi T, Ikeda K, Asano M, Harada T, Inaba M, Ogumi Z |
221 - 226 |
Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate Inaba M, Siroma Z, Kawatate Y, Funbiki A, Ogumi Z |
227 - 231 |
Ac impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite Funabiki A, Inaba M, Ogumi Z |
232 - 235 |
Studies of petroleum coke in carbonate-based electrolyte Jean M, Chausse A, Messina R |
236 - 238 |
Great reversible capacity of carbon lithium electrode in solid polymer electrolyte Deschamps M, Yazami R |
239 - 241 |
Chemical passivation of lithiated graphitized mesocarbon fibers Zaghib K, Yazami R, Broussely M |
242 - 244 |
The study of carbon half-cell voltage in lithium-ion secondary batteries Chen JM, Yao CY, Sheu SP, Chiu Y, Shih HC |
245 - 248 |
Study on CxN and CxS with disordered carbon structure as the anode materials for secondary lithium batteries Ito S, Murata T, Hasegawa M, Bito Y, Toyoguchi Y |
249 - 252 |
Real-time X-ray diffraction measurement of carbon structure during lithium-ion intercalation Asahina H, Kurotaki M, Yonei A, Yamaguchi S, Mori S |
253 - 257 |
Effects of the electrolyte composition on the electrochemical lithium-intercalation behavior of graphite-analysis by electrochemical quartz crystal microbalance technique Morita M, Ichimura T, Ishikawa M, Matsuda Y |
258 - 262 |
Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons Schonfelder HH, Kitoh K, Nemoto H |
263 - 266 |
Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries Tatsumi K, Kawamura T, Higuchi S, Hosotubo T, Nakajima H, Sawada Y |
267 - 270 |
Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries Novak P, Scheifele W, Winter M, Haas O |
271 - 276 |
Unique charge/discharge properties of carbon materials with different structures Roh YB, Jeong KM, Cho HG, Kang HY, Lee YS, Ryu SK, Lee BS |
277 - 282 |
Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries Menachem C, Peled E, Burstein L, Rosenberg Y |
283 - 286 |
Li-7 NMR and ESR analysis of lithium storage in a high-capacity perylene-based disordered carbon Takami N, Satoh A, Oguchi M, Sasaki H, Ohsaki T |
287 - 290 |
Effect of morphology and texture on electrochemical properties of graphite anodes Liu Q, Zhang T, Bindra C, Fischer JE, Josefowicz JY |
291 - 295 |
Graphite structure and lithium intercalation Shi H, Barker J, Saidi MY, Koksbang R, Morris L |
296 - 300 |
High capacity carbon anode materials: structure, hydrogen effect, and stability Zhou P, Papanek P, Bindra C, Lee R, Fischer JE |
301 - 303 |
Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M |
304 - 306 |
Characterization of organic electrolyte systems by nuclear magnetic resonance and molecular orbital simulation: equilibrium constant and net charge distribution in solvation state Arai J, Nishimura K, Muranaka Y, Ito Y |
307 - 310 |
On the characteristics of electrolytes with new lithium imide salts Kita F, Kawakami A, Nie J, Sonoda T, Kobayashi H |
311 - 315 |
Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging Yoshida H, Fukunaga T, Hazama T, Terasaki M, Mizutani M, Yamachi M |
316 - 319 |
Electrolyte for high voltage Li/LiMn1.9Co0.1O4 cells Hayashi K, Nemoto Y, Tobishima S, Yamaki J |
320 - 325 |
Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R |
326 - 327 |
Application of thermogravimetric studies or optimization of lithium hexafluorophosphate production Smagin AA, Matyukha VA, Korobtsev VP |
328 - 332 |
Effect of polysulfide-containing electrolyte on the film formation of the negative electrode Wagner MW, Liebenow C, Besenhard JO |
333 - 337 |
In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems Itoh T, Sato H, Nishina T, Matue T, Uchida I |
338 - 343 |
Performances of Li/LixCoO2 cells in LiAlCl4 center dot 3SO(2) electrolyte Park CW, Oh SM |
344 - 347 |
Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries Liu WF, Huang XJ, Li GB, Wang ZX, Huang H, Lu ZH, Xue RJ, Chen LQ |
348 - 351 |
Anodic behavior of a carbon plate in an LiCl-KCl binary molten salt Adachi A, Katayama Y, Miura T, Kishi T |
352 - 356 |
Performance characteristics of lithium-ion cells casing in situ polymerized electrolytes Sun LY, Higaki K, McDonald RC |
357 - 360 |
Effects of ceramic fillers on the electrical properties of (PEO)(16)LiClO4 electrolytes Choi BK, Kim YW, Shin KH |
361 - 363 |
Discharge characteristics of an Li/LiCoO2 cell with poly(acrylonitirile)-based polymer electrolyte Kim HS, Paik CH, Cho BW, Kim JT, Yun KS, Chun HS |
364 - 367 |
Helical aggregate formation of cholate salts in poly(N-vinyl-2-pyrrolidinone) gel and its effect on conductivity enhancement Tsutsumi H, Doi H, Oishi T |
368 - 371 |
Electrochemical intercalation of lithium into carbons using a solid polymer electrolyte Zaghib K, Choquette Y, Guerfi A, Simoneau M, Belanger A, Gauthier S |
372 - 376 |
Comparative ion transport in several polymer electrolytes Alloin F, Benrabah D, Sanchez JY |
377 - 380 |
Electrode and solid electrolyte thin films for secondary lithium-ion batteries Chen CH, Kelder EM, Schoonman J |
381 - 386 |
Comparison of organic and inorganic gelation agents in ethylene carbonate based electrolytes for lithium-ion batteries Eichinger G, Fabian M |
387 - 391 |
Properties and potential application of silica-gelled electrolytes for lithium-ion batteries Eichinger G, Fabian M |
392 - 396 |
Performances of lithium gel electrolyte polypyrrole secondary batteries Osaka T, Momma T, Ito H, Scrosati B |
397 - 401 |
Ionic conductivity enhancement in LiGe2(PO4)(3) solid electrolyte Yamamoto H, Tabuchi M, Takeuchi T, Kageyama H, Nakamura O |
402 - 406 |
A lithium-ion cell with an inorganic electrolyte Johnson AP, Schlaikjer CR |
407 - 411 |
Ionic conductivity enhancement in LiTi2(PO4)(3)-based composite electrolyte by the addition of lithium nitrate Kobayashi Y, Tabuchi M, Nakamura O |
412 - 415 |
All oxide solid-state lithium-ion cells Brousse T, Fragnaud P, Marchand R, Schleich DM, Bohnke O, West K |
416 - 420 |
New lithium-ion conducting compounds 3Li(3)N-MI (M = Li, Na, K, Rb) and their application to solid-state lithium-ion cells Hatake S, Kuwano J, Miyamori M, Saito Y, Koyama S |
421 - 426 |
Formation of perovskite solid solutions and lithium-ion conductivity in the compositions, Li2xSr1-2xMIII0.5-xTa0.5+xO3 (M = Cr, Fe, Co, Al, Ga, In, Y) Watanabe H, Kuwano J |
427 - 431 |
Series-connected multi-cell operation of lithium-ion cells by floating method Takei K, Kobayashi Y, Miyashiro H, Kumai K, Terada N, Iwahori T, Tanaka T |
432 - 435 |
Lithium polymer battery development for electric vehicle application Baudry P, Lascaud S, Majastre H, Bloch D |
436 - 439 |
Design and performance of 10 Wh rechargeable lithium batteries Nishimura K, Honbo H, Takeuchi S, Horiba T, Oda M, Koseki M, Muranaka Y, Kozono Y, Miyadera H |
440 - 442 |
Performance study of the LiCoO2/graphite system Yang CY, Cheng CH, Ho SM, Chen JC, Hurng WM |
443 - 447 |
More details on the new LiMnO2 rechargeable battery technology developed at Tadiran Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E |
448 - 450 |
Development of 1 kWh (300 Ah) class lithium-ion battery Majima M, Hanafusa K, Oka Y, Tanaka G, Yoshida H, Yagasaki E, Tada T |
451 - 454 |
Thermal studies of a lithium-ion battery Saito Y, Kanari K, Takano K |
455 - 458 |
Safety characteristics of rechargeable lithium metal cells Tobishima S, Sakurai Y, Yamaki J |
459 - 462 |
Lithium batteries: application of neutron radiography Kamata M, Esaka T, Fujine S, Yoneda K, Kanda K |
463 - 470 |
The use of in situ Fourier-transform infrared spectroscopy for the study of surface phenomena on electrodes in selected lithium battery electrolyte solutions Aurbach D, Chusid O |
471 - 475 |
Analysis of surface films on lithium in various organic electrolytes Kominato A, Yasukawa E, Sato N, Ijuuin T, Asahina H, Mori S |
476 - 479 |
Improvement in lithium cycling efficiency by using additives in lithium metal Saito K, Nemoto Y, Tobishima S, Yamaki J |
480 - 482 |
Electrochemical and quartz microbalance technique studies of anode material for secondary lithium batteries Koike S, Fujieda T, Wakabayashi N, Higuchi S |
483 - 486 |
Application of the microelectrode technique to the kinetic study of lithium deposition/dissolution and alloying in organic solutions Wang XM, Nishina T, Uchida I |
487 - 491 |
Microelectrode investigation of the lithium redox behavior in plasticized polymer electrolytes Wang XM, Iyoda M, Nishina T, Uchida S |
492 - 496 |
Lithium cycling efficiency of ternary solvent electrolytes with ethylene carbonate dimethyl carbonate mixture Sasaki Y, Hosoya M, Handa M |
497 - 500 |
Effect of carbon dioxide on lithium anode cycleability with various substrates Osaka T, Momma T, Matsumoto Y, Uchida Y |
501 - 505 |
In situ scanning vibrating electrode technique for lithium metal anodes Ishikawa M, Morita M, Matsuda Y |
506 - 509 |
Studies of Al-Al3Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries Machill S, Rahner D |
510 - 514 |
Electrochemical studies of a new anode material, Li3-xMxN (M = Co, Ni, Cu) Nishijima M, Kagohashi T, Takeda Y, Imanishi M, Yamamoto O |
515 - 518 |
Anode performance of a new layered nitride Li3-xCoxN (x=0.2-0.6) Shodai T, Okada S, Tobishima S, Yamaki J |
519 - 523 |
High-resolution images of ultrafine LiCoO2 powders synthesized by a sol-gel process Fey GTK, Chen KS, Hwang BJ, Lin YL |
524 - 529 |
Electrochemical lithium intercalation into and de-intercalation from porous LiCoO2 electrode by using potentiostatic current transient technique Pyun SI, Choi YM |
530 - 532 |
Microwave synthesis of LiCoO2 cathode materials Yan HW, Huang XJ, Lu ZH, Huang H, Xue RJ, Chen LQ |
533 - 535 |
Influence of the LiCoO2 particle size on the performance of lithium-ion batteries Sheu SP, Yao CY, Chen JM, Chiou YC |
536 - 539 |
X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems Nakai I, Takahashi K, Shiraishi Y, Nakagome T, Izumi F, Ishii Y, Nishikawa F, Konishi T |
540 - 544 |
Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions Sato H, Takahashi D, Nishina T, Uchida I |
545 - 548 |
Synthesis and electrochemical characteristics of Li(Ni center dot M)O-2 (M = Co, Mn) cathode for rechargeable lithium batteries Okada M, Takahashi K, Mouri T |
549 - 552 |
The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material Fey GTK, Dahn JR, Zhang MJ, Li W |
553 - 557 |
Synthesis and electrochemical properties for LiNiO2 substituted by other elements Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M |
558 - 560 |
Studies of LiNiO2 in lithium-ion batteries Sheu SP, Shih IC, Yao CY, Chen JM, Hurng WM |
561 - 564 |
Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries Nishida Y, Nakane Y, Satoh T |
565 - 569 |
Influence of morphology on the stability of LiNiO2 Li W, Currie JC, Wolstenholme J |
570 - 577 |
Structural and electrochemical studies of alpha-manganese dioxide (alpha-MnO2) Johnson CS, Dees DW, Mansuetto MF, Thackeray MM, Vissers DR, Argyriou D, Loong CK, Christensen L |
578 - 581 |
LiMn2-xCoxO4 cathode with enhanced cycleability Banov B, Todorov Y, Trifonova A, Momchilov A, Manev V |
582 - 585 |
The influence of doping on the operation of lithium manganese oxide spinel Wohlfahrt-Mehrens M, Butz A, Oesten R, Arnold G, Hemmer RP, Huggins RA |
586 - 589 |
Investigation of electrochemical lithium insertion in lamellar ternary oxides of the MxMnOy center dot zH(2)O group Bach S, Pereira-Ramos JP, Baffier N |
590 - 592 |
Quality control of Li1+delta Mn2-delta O4 spinels with their impurity phases by Jaeger and Vetter titration Kelder EM, Jak MJG, Schoonman J, Hardgrave MT, de-Andersen SY |
593 - 599 |
Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Li1 +/-delta Mn2O4 electrodes prepared by sol-gel method Pyun S, Choi YM, Jeng ID |
600 - 603 |
Preparation and electrochemical characteristics of quaternary Li-Mn-V-O spinel as the positive materials for rechargeable lithium batteries Kumagai N, Ooto H, Kumagai N |
604 - 608 |
Preparation and electrochemical investigation of LiMn2-xMexO4 (Me : Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries Amine K, Tukamoto H, Yasuda H, Fujita Y |
609 - 612 |
X-ray absorption fine structure study on Li-Mn-O compounds: LiMn2O4, Li4Mn5O12 and Li2MnO3 Shinshu F, Kaida S, Nagayama M, Nitta Y |
613 - 617 |
Novel synthesis process and structure refinements of Li4Mn5O12 for rechargeable lithium batteries Takada T, Hayakawa H, Akiba E, Izumi F, Chakoumakos BC |
618 - 622 |
Electrochemistry of LiMnO2 over an extended potential range Shu ZX, Davidson IJ, McMillan RS, Murray JJ |
623 - 628 |
Characterization of Li1-delta Mn2-delta O4 defect spinel materials by their phase transition, magnetic and electrochemical properties Tabuchi M, Masquelier C, Kobayashi H, Kanno R, Kobayashi Y, Akai T, Maki Y, Kageyama H, Nakamura O |
629 - 633 |
Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system Spahr ME, Novak P, Haas O, Nesper R |
634 - 636 |
Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide Johnson BJ, Doughty DH, Voigt JA, Boyle TJ |
637 - 640 |
A Li-7 nuclear magnetic resonance study on spinel LiMn2O4-delta Koiwai A, Sugiyama J, Hioki T, Noda S |
641 - 645 |
Nonstoichiometry and defect structure of spinel LiMn2O4-delta Sugiyama J, Atsumi T, Hioki T, Noda S, Kamegashira N |
646 - 651 |
Comparative study of Li[LixMn2-x]O-4 and LT-LiMnO2 for lithium-ion batteries Ohzuku T, Kitano S, Iwanaga M, Matsuno H, Ueda R |
652 - 655 |
Lithium intercalation into the copper, nickel or manganese vanadates Me(VO3)(2)center dot yH(2)O Andrukaitis E |
656 - 659 |
Study of lithium insertion into (MeV2O5+x/2)-V-x, Me = copper, iron or chromium Andrukaitis E |
660 - 663 |
Characterization of TiS2 composite cathodes with solid polymer electrolyte Moon SI, Kim JU, Jin BS, Hyung YE, Yun MS, Gu HB, Ko Y |
664 - 668 |
Ab initio calculation of the intercalation voltage of lithium transition metal oxide electrodes for rechargeable batteries Aydinol MK, Kohan AF, Ceder G |
669 - 673 |
Electrochemical lithium intercalation into vanadium pentoxide xerogel film electrode Pyun SI, Bae JS |
674 - 679 |
Observation of structure change due to discharge/charge process of V2O5 prepared by ozone oxidation method, using in situ X-ray diffraction technique Sato Y, Asada T, Tokugawa H, Kobayakawa K |
680 - 685 |
Lithium insertion behaviour of manganese or molybdenum substituted Li1+xV3O8 Kawakita J, Katagiri H, Miura T, Kishi T |
686 - 691 |
Structure and charge/discharge characteristics of new-layered oxides: Li1.8Ru0.6Fe0.6O3 and Li2IrO3 Kobayashi H, Kanno R, Tabuchi M, Kageyama H, Nakamura O, Takano M |
692 - 697 |
New amorphous oxides as high capacity negative electrodes for lithium batteries: the LixMVO4 (M = Ni, Co, Cd, Zn; 1 < x <= 8) series Guyomard D, Sigala C, La Salle ALG, Piffard SY |
698 - 703 |
The amorphous oxides MnV2O6+delta (0 Piffard Y, Leroux F, Guyomard D, Mansot JL, Tournoux M |
704 - 707 |
Novel layered chalcogenides as electrode materials for lithium-ion batteries Lavela P, Morales J, Sanchez L, Tirado JL |
708 - 710 |
Low-temperature carbon fluoride for high power density lithium primary batteries Hany P, Yazami R, Hamwi A |
711 - 715 |
Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes Sakurai Y, Arai H, Okada S, Yamaki J |
716 - 719 |
Cathode performance and voltage estimation of metal trihalides Arai H, Okada S, Sakurai Y, Yamaki J |
720 - 722 |
Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide Exnar I, Kavan L, Huang SY, Gratzel M |
723 - 725 |
delta-LiV2O5 as a positive electrode material for lithium-ion cells Walk CR, Margalit N |
726 - 729 |
Rocking-chair batteries based on LiMn2O4 and V6O13 Saidi MY, Koksbang R, Saidi ES, Shi H, Barker J |
730 - 734 |
Synthesis and characterization of a new trimetallic cathode material for lithium batteries Leising RA, Takeuchi ES |
735 - 738 |
New type polyamides containing disulfide bonds for positive active material of lithium secondary batteries Tsutsumi H, Okada K, Fujita K, Oishi T |
739 - 742 |
Spectroscopic identification of 2,5-dimercapto-1,3,4-thiadiazole and its lithium salt and dimer forms Pope JM, Sato T, Shoji E, Buttry DA, Sotomura T, Oyama N |