135 - 135 |
Designing protein function - Macromolecular design Hocker B, Midelfort K |
136 - 146 |
An accurate binding interaction model in de novo computational protein design of interactions: If you build it, they will bind London N, Ambroggio X |
147 - 162 |
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins Reichen C, Hansen S, Pluckthun A |
163 - 167 |
Design of net-charged abc-type collagen heterotrimers Parmar AS, Zahid S, Belure SV, Young R, Hasan N, Nanda V |
168 - 177 |
Affinity maturation of a computationally designed binding protein affords a functional but disordered polypeptide Butz M, Kast P, Hilvert D |
178 - 185 |
Rational design of a zinc phthalocyanine binding protein Mutter AC, Norman JA, Tiedemann MT, Singh S, Sha S, Morsi S, Ahmed I, Stillman MJ, Koder RL |
186 - 192 |
Change in protein-ligand specificity through binding pocket grafting Scheib U, Shanmugaratnam S, Farias-Rico JA, Hocker B |
193 - 202 |
Computational design of protein-small molecule interfaces Allison B, Combs S, DeLuca S, Lemmon G, Mizoue L, Meiler J |
203 - 214 |
Structure-guided engineering of Anticalins with improved binding behavior and biochemical characteristics for application in radio-immuno imaging and/or therapy Eggenstein E, Eichinger A, Kim HJ, Skerra A |
215 - 222 |
Structure-based non-canonical amino acid design to covalently crosslink an antibody-antigen complex Xu JQ, Tack D, Hughes RA, Ellington AD, Gray JJ |
223 - 227 |
Influence of canonical structure determining residues on antibody affinity and stability Clark LA, Demarest SJ, Eldredge J, Jarpe MB, Li Y, Simon K, van Vlijmen HWT |
228 - 233 |
Variations in the stability of NCR ene reductase by rational enzyme loop modulation Reich S, Kress N, Nest BM, Hauer B |
234 - 242 |
Protein design for pathway engineering Eriksen DT, Lian JZ, Zhao HM |