1 - 13 |
From curiosity to "power to change the world((R))" Stone C, Morrison AE |
15 - 17 |
Life and achievements of Carl Wagner, 100th birthday Martin M |
19 - 34 |
Trends in advanced batteries and key materials in the new century Takamura T |
35 - 41 |
Advanced composite anodes containing lithium cobalt nitride for secondary lithium battery Takeda Y, Yang J, Imanishi N |
43 - 50 |
Novel spherical microporous carbon as anode material for Li-ion batteries Wang Q, Li H, Chen LQ, Huang XJ |
51 - 59 |
Integrated battery simulation and characterization Liaw BY, Yang XG, Bethune K |
61 - 68 |
Alternative materials for negative electrodes in lithium systems Huggins RA |
69 - 81 |
Lithiated O2 phase, Li(2/3)+x(Co0.15Mn0.85)O-2 as cathode for Li-ion batteries Shaju KM, Rao GVS, Chowdari BVR |
83 - 90 |
Tartaric acid-assisted sol-gel synthesis of LiNi0.8Co0.2O2 and its electrochemical properties as a cathode material for lithium batteries Fey GTK, Subramanian V, Lu CZ |
91 - 97 |
Optimization of synthesis condition and the electrochemical properties of LiVMO6-delta (M=Mo or W) as candidate positive electrode material for lithium batteries Prabaharan SRS, Begam KM, Tou TY, Michael MS |
99 - 104 |
Improved lithium capacity of defective V2O5 materials Swider-Lyons KE, Love CT, Rolison DR |
105 - 110 |
Influence of surface treatment on the Li doping/undoping reaction at a mesophase low temperature carbon fiber Omae O, Suzuki J, Katsuta T, Yamaguchi K, Kikuchi F, Sekine K, Kawamura T, Takamura T |
111 - 118 |
Li mass transfer through a metallic Ag film covering on a carbon fiber anode Suzuki J, Omae O, Sekine K, Takamura T |
119 - 124 |
Metal-based very thin film anodes for lithium ion microbatteries Taillades G, Benjelloun N, Sarradin J, Ribes M |
125 - 129 |
SiOx-based anodes for secondary lithium batteries Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O |
131 - 136 |
Diffusion: a comparison between liquid and solid polymer LiTFSI electrolytes Oradd G, Edman L, Ferry A |
137 - 142 |
All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte Kobayashi Y, Miyashiro H, Takeuchi T, Shigemura H, Balakrishnan N, Tabuchi M, Kageyama H, Iwahori T |
143 - 153 |
High-voltage LiMg delta Ni0.5-delta Mn1.5O4 spinels for Li-ion batteries Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM |
155 - 159 |
Thermally stable solid polymer electrolyte containing borate ester groups for lithium secondary battery Kato Y, Suwa K, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M |
161 - 167 |
Polymeric gel electrolytes using a network matrix with carbonyl groups for rechargeable lithium batteries Morita M, Tanaka A, Yoshimoto N, Ishikawa M |
169 - 174 |
Ionic conductivity of PVdF-based polymer gel electrolytes Sekhon SS, Singh FP |
175 - 179 |
Ionic mobilities of PVDF-based polymer gel electrolytes as studied by direct current NMR Kataoka H, Saito Y, Miyazaki Y, Deki S |
181 - 188 |
Structure-related intercalation behaviour of LiCoO2 films Bouwman PJ, Boukamp BA, Bouwmeester HJM, Notten PHL |
189 - 194 |
Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles Koudriachova MV, Harrison NM, de Leeuw SW |
195 - 198 |
Low-temperature heat capacity of layer structure lithium nickel oxide Kawaji H, Oka T, Tojo T, Atake T, Hirano A, Kanno R |
199 - 205 |
Cathodic properties of (Al, Mg) co-doped LiNi0.7Co0.3O2 Madhavi S, Rao GVS, Chowdari BVR, Li SFY |
207 - 216 |
Neutron diffraction study on layered rocksalt Li1-xNi1-xO2 at high temperature Hirano A, Kanie K, Ichikawa T, Imanishi N, Takeda Y, Kanno R, Kamiyama T, Izumi F |
217 - 225 |
Reliable fast recharge of nickel metal hydride cells Liaw BY, Yang XG |
227 - 234 |
Polymer electrolytes based on PEO and aluminum carboxylates Florjanczyk Z, Zygadlo-Monikowska E, Rogalska-Jonska E, Krok F, Dygas JR, Misztal-Faraj B |
235 - 239 |
Positron annihilation and ion-conductivity studies of PEO-NH4ClO4 complexes Tarafdar S, Middya TR, Banerjee A, Sanyal D, Banerjee D, Verma KC, De U |
241 - 246 |
NMR study on the motion of Li+ defects and the magnetic behavior in LixNiO2 Nakamura K, Yamamoto M, Okamura K, Mahbubar RM, Michihiro Y, Nakabayashi I, Kanashiro T |
247 - 251 |
Preparation of iron phosphate cathode material of Li3Fe2(PO4)(3) by hydrothermal reaction and thermal decomposition processes Sato M, Tajimi S, Okawa H, Uematsu K, Toda K |
253 - 258 |
Conductivity and viscosity of liquid and gel electrolytes based on LiClO4, LiN(CF3SO2)(2) and PMMA Deepa M, Sharma N, Agnihotry SA, Singh S, Lal T, Chandra R |
259 - 266 |
Ionic conductance behavior of polymeric electrolytes containing magnesium salts and their application to rechargeable batteries Yoshimoto N, Yakushiji S, Ishikawa M, Morita M |
267 - 272 |
The electrochemical properties of thin-film LiCoO2 cathode prepared by sol-gel process Kim MK, Park KS, Son JT, Kim JG, Chung HT, Kim HG |
273 - 277 |
Tight-binding quantum chemical molecular dynamics study of cathode materials for lithium secondary battery Suzuki K, Kuroiwa Y, Takami S, Kubo M, Miyamoto A, Imamura A |
279 - 284 |
Development and application of nonequilibrium simulation program for ion diffusion in battery Jung CH, Morito H, Kobayashi Y, Suzuki K, Takami S, Kubo M, Miyamoto A |
285 - 290 |
Characterization of Li2S-SiS2-Li3MO3 (M=B Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries Hayashi A, Komiya R, Tatsumisago M, Minami T |
291 - 294 |
Dielectric behaviour of PVC-based polymer electrolytes Ramesh S, Yahaya AH, Arof AK |
295 - 302 |
Electrochemical deintercalation of lithium ions from lithium iron chloride spinel Kajiyama A, Takada K, Inada T, Kouguchi M, Kondo S, Watanabe M, Tabuchi M |
303 - 309 |
Synthesis, structure and physical properties of LixNa1-xNiO2 Matsumura T, Kanno R, Gover R, Kawamoto Y, Kamiyama T, Mitchell BJ |
311 - 318 |
Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries Komaba S, Myung ST, Kumagai N, Kanouchi T, Oikawa K, Kamiyama T |
319 - 326 |
Molybdenum oxides synthesized by hydrothermal treatment of A(2)MoO(4) (A=Li, Na, K) and electrochemical lithium intercalation into the oxides Komaba S, Kumagai N, Kumagai R, Kumagai N, Yashiro H |
327 - 334 |
Fabrications and electrochemical properties of fluorine-modified spinel LiMn2O4 for lithium ion batteries Wu C, Wu F, Chen LQ, Huang XJ |
335 - 339 |
X-ray diffraction and X-ray photoelectron spectroscopy analysis Cr-doped spinel LiMn2O4 for lithium ion batteries Wu C, Wu F, Chen LQ, Huang XJ |
341 - 346 |
Al2O3-coated LiCoO2 as cathode material for lithium ion batteries Liu LJ, Wang ZX, Li H, Chen LQ, Huang XJ |
347 - 354 |
PVDF-based porous polymer electrolytes for lithium batteries Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H |
355 - 361 |
Free volume and percolation in S-SEBS and fluorocarbon proton conducting membranes Edmondson CA, Fontanella JJ |
363 - 371 |
A versatile polymer electrolyte membrane fuel cell (3 kW(e)) facility Giddey S, Ciacchi FT, Badwal SPS, Zelizko V, Edwards JH, Duffy GJ |
373 - 381 |
Components manufacturing for solid oxide fuel cells Tietz F, Buchkremer HP, Stover D |
383 - 392 |
SOFC system and technology Dokiya M |
393 - 397 |
Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels Lu C, Worrell WL, Wang C, Park S, Kim H, Vohs JM, Gorte RJ |
399 - 404 |
Research on planar SOFC stack Wen TL, Wang D, Tu HY, Chen M, Lu Z, Zhang Z, Nie H, Huang W |
405 - 410 |
Solid oxide fuel cells for stationary, mobile, and military applications Singhal SC |
411 - 416 |
Fuel flexibility in power generation by solid oxide fuel cells Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K |
417 - 421 |
Microstructure and ionic conductivity of strontium-substituted lanthanum cobaltites Bucher E, Sitte W, Rom I, Papst I, Grogger W, Hofer F |
423 - 430 |
Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs Xia CR, Liu ML |
431 - 438 |
Nonstoichiometry and electrical transport in Sc-doped zirconia Kosacki I, Anderson HU, Mizutani Y, Ukai K |
439 - 446 |
Microstructures and oxygen diffusion at the LaMnO3 film/yttria-stabilized zirconia interface Horita T, Tsunoda T, Yamaji K, Sakai N, Kato T, Yokokawa H |
447 - 453 |
AC impedance study of Ni-YSZ cermet anodes in methane-fuelled internal reforming YSZ fuel cells Bebelis S, Neophytides S |
455 - 462 |
Synthesis and characterization of copper-stabilized zirconia as an anode material for SOFC Dongare MK, Dongare AM, Tare VB, Kemnitz E |
463 - 468 |
Electrochemical properties of reduced-temperature SOFCs with mixed ionic-electronic conductors in electrodes and/or interlayers Matsuzaki Y, Yasuda I |
469 - 476 |
Mass transport properties of Ce0.9Gd0.1O2-delta at the surface and in the bulk Yashiro K, Onuma S, Kaimai A, Nigara Y, Kawada T, Mizusaki J, Kawamura K, Horita T, Yokokawa H |
477 - 484 |
Electrodes and performance analysis of a ceria electrolyte SOFC Wang S, Kato T, Nagata S, Kaneko T, Iwashita N, Honda T, Dokiya M |
485 - 492 |
Demonstration of LPG-fueled solid oxide fuel cell systems Ahmed K, Gamman J, Foger K |
493 - 498 |
Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient Mineshige A, Yasui T, Ohmura N, Kobune M, Fujii S, Inaba M, Ogumi Z |
499 - 507 |
The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia Brichzin V, Fleig J, Habermeier HU, Cristiani G, Maier J |
509 - 515 |
Composite materials as electrolytes for solid oxide fuel cells: simulation of microstructure and electrical properties Dotelli G, Sora IN, Schmid C, Mari CM |
517 - 523 |
Comparison between La0.9Ba0.1Ga0.8Mg0.2O2.85 and La(0.9)Sr(0.1)Gao(0.8)Mg(0.2)O(2.85) as SOFCs electrolytes Yamaji K, Horita T, Sakai N, Yokokawa H |
525 - 529 |
Au-oxide composites as HC-sensitive electrode material for mixed potential gas sensors Zosel J, Westphal D, Jakobs S, Muller R, Guth U |
531 - 536 |
Microstructure and electrical properties of porous Y1-xCaxFeO3 cathode materials by gelcasting process Liu XQ, Gao JF, Liu YF, Peng RR, Peng DK, Meng GY |
537 - 542 |
Development of a multilayer anode for solid oxide fuel cells Muller AC, Herbstritt D, Ivers-Tiffee E |
543 - 550 |
Oxidation of H-2, CO and methane in SOFCs with Ni/YSZ-cermet anodes Weber A, Sauer B, Muller AC, Herbstritt D, Ivers-Tiffee E |
551 - 554 |
Performance of a SOFC fed by ethanol reforming products Galvita VV, Belyaev VD, Frumin AV, Demin AK, Tsiakaras PE, Sobyanin VA |
555 - 560 |
Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor Demin AK, Tsiakaras PE, Sobyanin VA, Hramova SY |
561 - 565 |
Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing Peng RR, Xia CR, Liu XQ, Peng DK, Meng GY |
567 - 573 |
Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria Lewis GS, Atkinson A, Steele BCH, Drennan J |
575 - 582 |
Properties of La1-ySryNi1-xFexO3 as a cathode material for a low-temperature operating SOFC Chiba R, Yoshimura F, Sakurai Y |
583 - 590 |
Supported Zr(Sc)O-2 SOFCs for reduced temperature prepared by slurry coating and co-firing Cai Z, Lan TN, Wang S, Dokiya M |
591 - 596 |
Supported Zr(Sc)O-2 SOFCs for reduced temperature prepared by electrophoretic deposition Kobayashi K, Takahashi I, Shiono M, Dokiya M |
597 - 608 |
Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion Primdahl S, Mogensen M |
609 - 613 |
Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell Ishihara T, Fukui S, Nishiguchi H, Takita Y |
615 - 623 |
Structural and property investigations of strontium galloniobate McColm TD, Irvine JTS |
625 - 639 |
The absolute potential scale in solid state electrochemistry Tsiplakides D, Vayenas CG |
641 - 646 |
YSZ aided oxidation of C-2-C-4 hydrocarbons into oxygenates over MoO3 or V2O5 Takehira K, Shishido T, Komatsu T, Hamakawa S, Kajioka H |
647 - 655 |
Oxygen separation membranes based on intergrowth structures Manthiram A, Prado F, Armstrong T |
657 - 662 |
Functionally gradient bilayer oxide membranes and electrolytes Wachsman ED |
663 - 667 |
Thermal stability and conduction properties of the LaxSr2-xFeO4+delta system Jennings AJ, Skinner SJ |
669 - 674 |
Electrochemical promotion of catalysis: the use of transition state theory for the prediction of reaction rate modification Metcalfe IS |
675 - 680 |
Oxygen permeation in the system SrFeO3-x-SrCoO3-y Wiik K, Aasland S, Hansen HL, Tangen IL, Odegard R |
681 - 687 |
Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes Teraoka Y, Honbe Y, Ishii J, Furukawa H, Moriguchi I |
689 - 694 |
Oxygen-sorptive and -desorptive properties of perovskite-related oxides under temperature-swing conditions for oxygen enrichment Kusaba H, Sakai G, Shimanoe K, Miura N, Yamazoe N |
695 - 701 |
Water and protons in electrodeposited MnO2 (EMD) Donne SW, Feddrix FH, Glockner R, Marion S, Norby T |
703 - 707 |
Oxygen transport in La1-xSrxFe1-yMnyO3-delta perovskites Mikkelsen L, Andersen IGK, Skou EM |
709 - 714 |
Fe doped LaGaO3 perovskite oxide as an oxygen separating membrane for CH4 partial oxidation Ishihara T, Tsuruta Y, Todaka T, Nishiguchi H, Takita Y |
715 - 720 |
Extraction and production of hydrogen using high-temperature proton conductor Matsumoto H, Okubo M, Hamajima S, Katahira K, Iwahara H |
721 - 726 |
The oxidation of ethanol over Pt catalyst-electrodes deposited on ZrO2 (8 mol% Y2O3) Tsiakaras PE, Douvartzides SL, Demin AK, Sobyanin VA |
727 - 733 |
Low current density electrochemical cell for NO decomposition Bredikhin S, Maeda K, Awano M |
735 - 739 |
Phase composition, oxidation state and electrical conductivity of SrFe1.5-xCoxOy Deng ZQ, Zhang GG, Liu W, Peng DK, Chen CS |
741 - 747 |
Silica alcogel-based proton conducting solid-liquid electrolyte composite Srivastava R, Chandra S |
749 - 757 |
Structural studies of the distorted perovskite proton conductors Sr3Ca1+xNb2-xO9-delta Irvine JTS, Corcoran DJD, Canales-Vazquez J |
759 - 762 |
A model for anomalous penetration of "hot" deuterium in proton conductors Samgin AL |
763 - 768 |
Tubular zirconia-yttria electrolyte membrane technology for oxygen separation Ciacchi FT, Badwal SPS, Zelizko V |
769 - 775 |
Preparation of hollandite-type KxGaxSn8-xO16 thin film and NO adsorption behavior Fujimoto K, Suzuki J, Harada M, Awatsu S, Mori T, Watanabe M |
777 - 781 |
Reactivity of LSCF perovskites Scott SP, Mantzavinos D, Hartley A, Sahibzada M, Metcalfe IS |
783 - 800 |
Exhaust gas sensors for automotive emission control Riegel J, Neumann H, Wiedenmann HM |
801 - 807 |
High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode Zhuiykov S, Ono T, Yamazoe N, Miura N |
809 - 817 |
Incorporation of hydrogen into magnesium aluminate spinel Fukatsu N, Kurita N, Shiga H, Murai Y, Ohashi T |
819 - 822 |
Optical ozone detection by use of polyaniline film Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS |
823 - 826 |
Dynamics of solid-state cell for CO2 monitoring Bak T, Nowotny J, Rekas M, Sorrell CC |
827 - 832 |
Effects of NiO addition in WO3-based gas sensors prepared by thick film process Noh W, Shin Y, Kim J, Lee W, Hong K, Akbar SA, Park J |
833 - 841 |
Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K |
843 - 852 |
The application of solid state ionic technology for novel methods of energy generation and supply Edwards JH, Badwal SPS, Duffy GJ, Lasich J, Ganakas G |
853 - 860 |
Modelling switching of electrochromic devices - a route to successful large area device design Bell JM, Matthews JP, Skryabin IL |
861 - 866 |
Redox supercapacitor using polyaniline doped with Li salt as electrode Ryu KS, Kim KM, Park YJ, Park NG, Kang MG, Chang SH |
867 - 872 |
Theoretical and experimental results on Au-NiO and Au-CoO electrochromic composite films Fantini MCA, Ferreira FF, Gorenstein A |
873 - 875 |
Impedance studies of Li inserted sol-gel-derived WO3 films Sharma N, Deepa M, Agnihotry SA |
877 - 881 |
Transmission enhancement in tin oxide conductive coatings for ECWs Varshney P, Deepa M, Sharma N, Agnihotry SA |
883 - 889 |
Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte Hashmi SA, Upadhyaya HM |
891 - 898 |
Theoretical aspect on solid state device by ionic C-60 superconductors Matsushita E |
899 - 905 |
Similarities between electrochromic windows and thin film batteries Heckner KH, Kraft A |
XIX - XX |
Special issue: Proceedings of International Conference on Solid State Ionics, (Materials and Processes for Energy and Environment), Cairns, Australia, 8-13 July, 2001 - Part A -Preface Badwal SPS |