173 - 183 |
Historical Development of Secondary Lithium Batteries Brandt K |
184 - 198 |
Design Considerations Goodenough JB |
201 - 211 |
Why Transition-Metal (di) Oxides Are the Most Attractive Materials for Batteries Ohzuku T, Ueda A |
212 - 221 |
Lithium-Ion Rechargeable Batteries with Licoo2 and Carbon Electrodes - The Licoo2 C System Ozawa K |
222 - 237 |
The Carbon Li1+xmn2O4 System Guyomard D, Tarascon JM |
238 - 256 |
The LiNiO2 Carbon Lithium-Ion Battery Ebner W, Fouchard D, Xie L |
257 - 264 |
The Lixv2O5 System - An Overview of the Structure Modifications Induced by the Lithium Intercalation Delmas C, Cognacauradou H, Cocciantelli JM, Menetrier M, Doumerc JP |
265 - 270 |
Thermal-Stability of Lixcoo2, Lixnio2 and Lambda-MnO2 and Consequences for the Safety of Li-Ion Cells Dahn JR, Fuller EW, Obrovac M, Vonsacken U |
273 - 283 |
Carbon Materials for Lithium-Ion (Shuttlecock) Cells Sawai K, Iwakoshi Y, Ohzuku T |
284 - 290 |
Comparative Thermal-Stability of Carbon Intercalation Anodes and Lithium Metal Anodes for Rechargeable Lithium Batteries Vonsacken U, Nodwell E, Sundher A, Dahn JR |
293 - 305 |
New Electrolyte Compositions Stable over the O-V to 5-V Voltage Range and Compatible with the Li1+xmn2O4 Carbon Li-Ion Cells Tarascon JM, Guyomard D |
309 - 319 |
The History of Polymer Electrolytes Armand M |
320 - 335 |
Review of Hybrid Polymer Electrolytes and Rechargeable Lithium Batteries Koksbang R, Olsen II, Shackle D |
336 - 342 |
Lithium-Polymer Batteries for Electrical Vehicles - A Realistic View Anderman M |
343 - 353 |
Li-Conducting Ionic Rubbers for Lithium Battery and Other Applications Angell CA, Fan J, Liu CL, Lu Q, Sanchez E, Xu K |
357 - 368 |
Thin-Film Rechargeable Li Batteries Jones SD, Akridge JR, Shokoohi FK |
III - IV |
Recent Advances in Rechargeable Li Batteries - Preface Whittingham MS |