1 - 2 |
Proceedings of the 16th International Conference on Molecular Beam Epitaxy (MBE 2010) Berlin, Germany 22 August 27 August 2010 preface Geelhaar L, Heyn C, Wieck AD |
5 - 8 |
Crystallization of amorphous In As/GaAs films on GaAs Hey R, Santos PV, Luna E, Flissikowski T, Jahn U |
9 - 12 |
Area selective epitaxy of In As on GaAs(001) and GaAs(111)A by migration enhanced epitaxy Zander M, Nishinaga J, Iga K, Horikoshi Y |
13 - 16 |
Growth temperature dependence of strain relaxation during InGaAs/GaAs(001) heteroepitaxy Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M |
17 - 20 |
X-ray diffraction analysis of step-graded InxGa1-xAs buffer layers grown by molecular beam epitaxy Lin H, Huo YJ, Rong YW, Chen R, Kamins TI, Harris JS |
21 - 25 |
Investigation of metamorphic InGaAs quantum wells using N-incorporated buffer on GaAs grown by MBE Song YX, Wang SM, Cao XH, Lai ZH, Sadeghi M |
26 - 29 |
Carrier-concentration dependent photoluminescence of InAsN films grown by RF-MBE Kuboya S, Kuroda M, Katayama R, Onabe K |
30 - 34 |
Band gap engineering with sub-monolayer nitrogen insertion into InGaAs/GaAs quantum well Ishikawa F, Morifuji M, Nagahara K, Uchiyama M, Higashi K, Kondow M |
35 - 38 |
AlGaAsSb superlattice buffer layer for p-channel GaSb quantum well on GaAs substrate Tokranov V, Nagaiah P, Yakimov M, Matyi RJ, Oktyabrsky S |
39 - 41 |
Strain control of InGaAs/AlAs/AlAsSb quantum wells by interface termination method between AlAs and AlAsSb Gozu S, Mozume T, Ishikawa H |
42 - 44 |
Si doping of MBE grown bulk GaAsSb on InP Detz H, Klang P, Andrews AM, Schrenk W, Strasser G |
45 - 47 |
Enhanced emission efficiency due to an excited subband resonance in a GaAs-based quantum-well system Fujiwara K, Jahn U, Luna E, Grahn HT |
48 - 51 |
(100) GaAs/AlxGa1-xAs heterostructures for Zeeman spin splitting studies of hole quantum wires Trunov K, Reuter D, Ludwig A, Chen JCH, Klochan O, Micolich AP, Hamilton AR, Wieck AD |
52 - 55 |
Effect of strain on the Dresselhaus effect of InAs-based heterostructures Matsuda T, Yoh K |
56 - 59 |
Controlled growth of exciton-polariton microcavities using in situ spectral reflectivity measurements Biermann K, Cerda-Mendez EA, Horicke M, Santos PV, Hey R |
60 - 63 |
Growth by molecular beam epitaxy of amorphous and crystalline GaNAs alloys with band gaps from 3.4 to 0.8 eV for solar energy conversion devices Novikov SV, Staddon CR, Foxon CT, Yu KM, Broesler R, Hawkridge M, Liliental-Weber Z, Denlinger J, Demchenko I, Luckert F, Edwards PR, Martin RW, Walukiewicz W |
64 - 67 |
Strain relaxation in GaN/Al0.1Ga0.9N superlattices for mid-infrared intersubband absorption Kotsar Y, Kandaswamy PK, Das A, Sarigiannidou E, Bellet-Amalric E, Monroy E |
68 - 71 |
Role of strain in growth kinetics of AlGaN layers during plasma-assisted molecular beam epitaxy Mizerov AM, Jmerik VN, Yagovkina MA, Troshkov SI, Kop'ev PS, Ivanov SV |
72 - 75 |
Growth and characterization of InGaN by RF-MBE Kraus A, Hammadi S, Hisek J, Buss R, Jonen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R, Hangleiter A |
76 - 79 |
Growth of non-polar GaN on LiGaO2 by plasma-assisted MBE Schuber R, Chen YL, Shih CH, Huang TH, Vincze P, Lo I, Chang LW, Schimmel T, Chou MMC, Schaadt DM |
80 - 83 |
Molecular beam epitaxy as a method for the growth of free-standing bulk zinc-blende GaN and AlGaN crystals Novikov SV, Staddon CR, Foxon CT, Luckert F, Edwards PR, Martin RW, Kent AJ |
84 - 87 |
Growth of cubic GaN on nano-patterned 3C-SiC/Si (001) substrates Kemper RM, Weinl M, Mietze C, Haberlen M, Schupp T, Tschumak E, Lindner JKN, Lischka K, As DJ |
88 - 90 |
Carbon as an acceptor in cubic GaN/3C-SiC Zado A, Tschumak E, Gerlach JW, Lischka K, As DJ |
91 - 94 |
RF-MBE growth of Si doped cubic GaN and hexagonal phase incorporated c-AlGaN films on MgO(001) substrates Kakuda M, Kuboya S, Onabe K |
95 - 98 |
Rare-earth oxide superlattices on Si(111) Grosse F, Bokoch S, Behnke S, Proessdorf A, Niehle M, Trampert A, Braun W, Riechert H |
99 - 102 |
Low interfacial density of states around midgap in MBE-Ga2O3(Gd2O3)/In0.2Ga0.8As Lin CA, Chiu HC, Chiang TH, Chang YC, Lin TD, Kwo J, Wang WE, Dekoster J, Heyns M, Hong M |
103 - 106 |
In-situ XPS and RHEED study of gallium oxide on GaAs deposition by molecular beam epitaxy Priyantha W, Radhakrishnan G, Droopad R, Passlack M |
107 - 110 |
Epitaxial stabilization of a monoclinic phase in Y2O3 films on c-plane GaN Chang WH, Chang P, Lee WC, Lai TY, Kwo J, Hsu CH, Hong JM, Hong M |
111 - 113 |
Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire Petukhov V, Bakin A, Tsiaoussis I, Rothman J, Ivanov S, Stoemenos J, Waag A |
114 - 121 |
Metastable II-VI sulphides: Growth, characterization and stability Prior KA, Bradford C, Davidson IA, Moug RT |
122 - 126 |
Optical characterization of isoelectronic ZnSe1-xOx semiconductors Lin YC, Chung HL, Ku JT, Chen CY, Chien KF, Fan WC, Lee L, Chyi JI, Chou WC, Chang WH, Chen WK |
127 - 131 |
Growth and material properties of ZnTe on GaAs, InP, InAs and GaSb (001) substrates for electronic and optoelectronic device applications Fan J, Ouyang L, Liu X, Ding D, Furdyna JK, Smith DJ, Zhang YH |
132 - 134 |
Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (001) substrates by molecular beam epitaxy Kumagai Y, Imada S, Baba T, Kobayashi M |
135 - 139 |
Growth and characterization of C-60/GaAs interfaces and C-60 doped GaAs Nishinaga J, Horikoshi Y |
140 - 143 |
Optical and structural properties of Pbi(1-x)Eu(x)Te/CdTe//GaAs (001) heterostructures grown by MBE Smajek E, Szot M, Kowalczyk L, Domukhovski V, Taliashvili B, Dziawa P, Knoff W, Lusakowska E, Reszka A, Kowalski B, Wiater M, Wojtowicz T, Story T |
144 - 149 |
Towards controlled molecular beam epitaxial growth of artificially stacked Si: Study of boron adsorption and surface segregation on Si(111) Fissel A, Krugener J, Osten HJ |
150 - 153 |
Nano-clustered Pd catalysts formed on GaN surface for green chemistry Hirayama M, Ueta Y, Konishi T, Tsukamoto S |
154 - 157 |
Wide-band emissions from highly stacked quantum dot structure grown using the strain-compensation technique Akahane K, Yamamoto N |
158 - 160 |
Evaluation of multi-stacked InAs/GaNAs self-assembled quantum dots on GaAs (001) grown using different As species Takata A, Oshima R, Shoji Y, Akahane K, Okada Y |
161 - 163 |
Growth and characterization of polar (0001) and semipolar (11-22) InGaN/GaN quantum dots Das A, Sinha P, Kotsar Y, Kandaswamy PK, Dimitrakopulos GP, Kehagias T, Komninou P, Nataf G, De Mierry P, Monroy E |
164 - 166 |
High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers Liu WS, Wu HM, Liao YA, Chyi JI, Chen WY, Hsu TM |
167 - 171 |
Structural and optical properties of InAs bilayer quantum dots grown at constant growth rate and temperature Ngo CY, Yoon SF, Tanoto H, Hui HK, Lim DR, Wong V, Chua SJ |
172 - 175 |
Power and temperature dependent magneto-photoluminescence of the asymmetric double layers of quantum dots Lee H, Yoo T, Lee S, Dobrowolska M, Furdyna JK |
176 - 179 |
Composition uniformity of site-controlled InAs/GaAs quantum dots Biasiol G, Baranwal V, Heun S, Prasciolu M, Tormen M, Locatelli A, Mentes TO, Nino MA, Sorba L |
180 - 182 |
Effects of nano-pattern size on the property of InAs site-controlled quantum dots Cheng CC, Meneou K, Cheng KY |
183 - 186 |
Nanoimprint lithography patterned GaAs templates for site-controlled InAs quantum dots Tommila J, Tukiainen A, Viheriala J, Schramm A, Hakkarainen T, Aho A, Stenberg P, Dumitrescu M, Guina M |
187 - 190 |
Growth and annealing of InAs quantum dots on pre-structured GaAs substrates Helfrich M, Hu DZ, Hendrickson J, Gehl M, Rulke D, Groger R, Litvinov D, Linden S, Wegener M, Gerthsen D, Schimmel T, Hetterich M, Kalt H, Khitrova G, Gibbs HM, Schaadt DM |
191 - 193 |
Multi-color quantum dot ensembles grown in selective-areas for shape-controlled broadband light source Ozaki N, Takeuchi K, Ohkouchi S, Ikeda N, Sugimoto Y, Asakawa K, Hogg RA |
194 - 197 |
Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices Huggenberger A, Schneider C, Drescher C, Heckelmann S, Heindel T, Reitzenstein S, Kamp M, Hofling S, Worschech L, Forchel A |
198 - 200 |
Space arrangement of Ge nanoislands formed by growth of Ge on pit-patterned Si substrates Novikov P, Smagina J, Vlasov D, Deryabin A, Kozhukhov A, Dvurechenskii A |
201 - 205 |
Selective growth of GaAs nanostructures and subsequent guided self-assembly of InAs quantum dots on nanoimprint lithography patterned SiO2/GaAs substrates Tukiainen A, Tommila J, Aho A, Schramm A, Viheriala J, Ahorinta R, Dumitrescu M, Pessa M, Guina M |
206 - 210 |
Bimodal optical characteristics of lateral InGaAs quantum dot molecules Thongkamkoon N, Patanasemakul N, Siripitakchai N, Thainoi S, Panyakeow S, Kanjanachuchai S |
211 - 214 |
Bandgap engineering of 1.3 mu m quantum dot structures for terahertz (THz) emission Ngo CY, Yoon SF, Teng JH |
215 - 218 |
Optimization of InGaAsN(Sb)/GaAs quantum dots for optical emission at 1.55 mu m with low optical degradation Milla MJ, Guzman A, Gargallo-Caballero R, Ulloa JM, Hierro A |
219 - 222 |
Influence of In and As fluxes on growth of self-assembled InAs quantum dots on GaAs(001) Kamiya I, Shirasaka T, Shimomura K, Tex DM |
223 - 227 |
InAs/GaAs quantum dot density variation across a quarter wafer when grown with substrate rotation Thomassen SF, Reenaas TW, Fimland BO |
228 - 232 |
Controlled growth of InP/In0.48Ga0.52P quantum dots on GaAs substrate Ugur A, Hatami F, Masselink WT |
233 - 235 |
GaSb quantum rings grown by metal organic molecular beam epitaxy Odashima S, Sakurai S, Wada M, Suemune I |
236 - 240 |
CdSe quantum dots grown on a Zn0.2Mg0.8S0.64Se0.36 barrier: MBE growth and mu-PL characterisation Davidson IA, Moug RT, Dalgarno PA, Bradford C, Warburton RJ, Prior KA |
241 - 243 |
Marked reduction in photocarrier lifetime by erbium doping into self-assembled InAs quantum dots embedded in strain-relaxed InGaAs barriers Kitada T, Takahashi T, Ueyama H, Morita K, Isu T |
244 - 246 |
Molecular-beam epitaxial growth of Ge/Si nanostructures under low-energy ion irradiation Smagina ZV, Novikov PL, Zinovyev VA, Armbrister VA, Teys SA, Dvurechenskii AV |
247 - 249 |
Epitaxy of Si nanocrystals by molecular beam epitaxy on a crystalline insulator LaAlO3(001) Mortada H, Dentel D, Derivaz M, Bischoff JL, Denys E, Moubah R, Ulhaq-Bouillet C, Werckmann J |
250 - 253 |
New method to isolate and distribute photoluminescence emissions from InAs quantum dots over a wide-wavelength range Ohkouchi S, Kumagai N, Shirane M, Igarashi Y, Nomura M, Ota Y, Yorozu S, Iwamoto S, Arakawa Y |
254 - 258 |
Self-assembled InAs quantum dots on anti-phase domains of GaAs on Ge substrates Tantiweerasophon W, Thainoi S, Changmuang P, Kanjanachuchai S, Rattanathammaphan S, Panyakeow S |
259 - 262 |
InGaAs quantum dots embedded in DBR-coupled double cavity Tzeng TE, Chuang KY, Liu YC, Tsuei BT, Lin EY, Lay TS |
263 - 266 |
Mechanism and applications of local droplet etching Heyn C, Stemmann A, Klingbeil M, Strelow C, Koppen T, Mendach S, Hansen W |
267 - 270 |
Self-assembled GaAs local artificial substrates on Si by droplet epitaxy Bietti S, Somaschini C, Koguchi N, Frigeri C, Sanguinetti S |
271 - 274 |
Transformation of concentric quantum double rings to single quantum rings with squarelike nanoholes on GaAs(001) by droplet epitaxy Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S, Ratanathammaphan S |
275 - 278 |
InP ring-shaped quantum-dot molecules grown by droplet molecular beam epitaxy Jevasuwan W, Boonpeng P, Thainoi S, Panyakeow S, Ratanathammaphan S |
279 - 281 |
Outer zone morphology in GaAs ring/disk nanostructures by droplet epitaxy Somaschini C, Bietti S, Fedorov A, Koguchi N, Sanguinetti S |
282 - 285 |
Surface morphology and photoluminescence of InGaAs quantum rings grown by droplet epitaxy with varying In0.5Ga0.5 droplet amount Pankaow N, Thainoi S, Panyakeow S, Ratanathammaphan S |
286 - 289 |
Zinc-blende GaN quantum dots grown by vapor-liquid-solid condensation Schupp T, Meisch T, Neuschl B, Feneberg M, Thonke K, Lischka K, As DJ |
290 - 292 |
Hybrid semiconductor quantum dot-metal nanocrystal structures prepared by molecular beam epitaxy Urbanczyk A, Hamhuis GJ, Notzel R |
293 - 296 |
GaP/GaAs1-xPx nanowires fabricated with modulated fluxes: A step towards the realization of superlattices in a single nanowire Jabeen F, Patriarche G, Glas F, Harmand JC |
297 - 300 |
On the growth of InAs nanowires by molecular beam epitaxy Martelli F, Rubini S, Jabeen F, Felisari L, Grillo V |
301 - 303 |
Effect of As/In-flux on the growth of InAs nanowire by molecular beam epitaxy Babu JB, Yoh K |
304 - 306 |
Growth mechanism of InAs-InSb heterostructured nanowires grown by chemical beam epitaxy Lugani L, Ercolani D, Beltram F, Sorba L |
307 - 310 |
Strain in GaAs-MnAs core-shell nanowires grown by molecular beam epitaxy Hilse M, Takagaki Y, Ramsteiner M, Herfort J, Breuer S, Geelhaar L, Riechert H |
311 - 314 |
Nucleation and growth of Au-assisted GaAs nanowires on GaAs(111)B and Si(111) in comparison Breuer S, Hilse M, Geelhaar L, Riechert H |
315 - 318 |
MBE-VLS growth of catalyst-free III-V axial heterostructure nanowires on (111)Si substrates Paek J, Yamaguchi M, Amano H |
319 - 322 |
Growth and properties of self-assembled InP-nanoneedles on (001) InP by gas source MBE Chashnikova M, Mogilatenko A, Fedosenko O, Bryksa V, Petrov A, Machulik S, Semtsiv MP, Neumann W, Masselink WT |
323 - 325 |
Low-temperature molecular beam epitaxy growth and properties of GaGdN nanorods Tambo H, Hasegawa S, Kameoka H, Zhou YK, Emura S, Asahi H |
326 - 329 |
GaN nanocolumns on sapphire by ammonia-MBE: From self-organized to site-controlled growth Vezian S, Alloing B, Zuniga-Perez J |
330 - 333 |
Insertion of CdSe quantum dots in ZnSe nanowires: MBE growth and microstructure analysis den Hertog M, Elouneg-Jamroz M, Bellet-Amalric E, Bounouar S, Bougerol C, Andre R, Genuist Y, Poizat JP, Kheng K, Tatarenko S |
334 - 339 |
Importance of kinetics effects in the growth of germanium nanowires by vapour-liquid-solid Molecular Beam Epitaxy Porret C, Devillers T, Jain A, Dujardin R, Barski A |
340 - 343 |
Distribution of Mn in ferromagnetic (In,Mn)Sb films grown on (001) GaAs using MBE Tran L, Hatami F, Masselink WT, Herfort J, Trampert A |
344 - 347 |
Photoreflectance study of GaMnAs layers grown by MBE Martinez-Velis I, Contreras-Guerrero R, Rojas-Ramirez JS, Ramirez-Lopez M, Gallardo-Hernandez S, Kudriatsev Y, Vazquez-Lopez C, Jimenez-Sandoval S, Rangel-Kuoppa VT, Lopez-Lopez M |
348 - 350 |
Molecular beam epitaxy of LiMnAs Novak V, Cukr M, Soban Z, Jungwirth T, Marti X, Holy V, Horodyska P, Nemec P |
351 - 354 |
Studies on the InGaGdN/GaN magnetic semiconductor heterostructures grown by plasma-assisted molecular-beam epitaxy Tawil SNM, Krishnamurthy D, Kakimi R, Emura S, Hasegawa S, Asahi H |
355 - 358 |
Cu-doped nitrides: Promising candidates for a nitride based spin-aligner Ganz PR, Fischer G, Surgers C, Schaadt DM |
359 - 362 |
Effect of growth temperature on the structural, morphological and magnetic properties of Fe films on GaN(0001) Gao CX, Brandt O, Lahnemann J, Herfort J, Schonherr HP, Jahn U, Jenichen B |
363 - 367 |
Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature Hassan M, Springholz G, Lechner RT, Groiss H, Kirchschlager R, Bauer G |
368 - 371 |
Suppression of interfacial intermixing between MBE-grown Heusler alloy Ni2MnIn and (001)InAs or InAs-HEMT structures Bohse S, Zolotaryov A, Kreuzpaintner W, Lott D, Kornowski A, Stemmann A, Heyn C, Hansen W |
372 - 375 |
Strong crystal anisotropy of magneto-transport property in Fe3Si epitaxial film Hung HY, Huang SY, Chang P, Lin WC, Liu YC, Lee SF, Hong M, Kwo J |
376 - 379 |
Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications Ludwig A, Roescu R, Rai AK, Trunov K, Stromberg F, Li M, Soldat H, Ebbing A, Gerhardt NC, Hofmann MR, Wende H, Keune W, Reuter D, Wieck AD |
380 - 382 |
Magneto-optical properties of ZnMnTe/ZnSe quantum dots Fan WC, Ku JT, Chou WC, Chen WK, Chang WH, Yang CS, Chia CH |
383 - 386 |
Preparation characterization of MnSb-GaAs spin LED Hanna T, Yoshida D, Munekata H |
387 - 392 |
GaAs on 200 mm Si wafers via thin temperature graded Ge buffers by molecular beam epitaxy Richter M, Rossel C, Webb DJ, Topuria T, Gerl C, Sousa M, Marchiori C, Caimi D, Siegwart H, Rice PM, Fompeyrine J |
393 - 396 |
A comparison of the low frequency noise in InSb grown on GaAs and Si by MBE Dobbert J, Tran L, Hatami F, Kunets VP, Salamo GJ, Masselink WT |
397 - 400 |
Selective growth of InSb on localized area of Si(100) by molecular beam epitaxy Hara S, Iida T, Nishino Y, Uchida A, Horii H, Fujishiro HI |
401 - 404 |
Interface engineering for improved growth of GaSb on Si(111) Proessdorf A, Grosse F, Romanyuk O, Braun W, Jenichen B, Trampert A, Riechert H |
405 - 408 |
Growth of low defect AlGaSb films on Si (100) using AlSb and InSb quantum dots intermediate layers Noh YK, Kim MD, Oh JE, Yang WC, Kim YN |
409 - 412 |
X-ray study of antiphase domains and their stability in MBE grown GaP on Si Letoublon A, Guo W, Cornet C, Boulle A, Veron M, Bondi A, Durand O, Rohel T, Dehaese O, Chevalier N, Bertru N, Le Corre A |
413 - 417 |
Role of buried cracks in mitigating strain in crack free GaN grown on Si (111) employing AlN interlayer schemes Tang H, Baribeau JM, Aers GC, Fraser J, Rolfe S, Bardwell JA |
418 - 421 |
GaN nanowire templates for the pendeoepitaxial coalescence overgrowth on Si(111) by molecular beam epitaxy Dogan P, Brandt O, Pfuller C, Bluhm AK, Geelhaar L, Riechert H |
422 - 425 |
Growth of InAs quantum dots and dashes on silicon substrates: Formation and characterization Alzoubi T, Usman M, Benyoucef M, Reithmaier JP |
426 - 430 |
Effects of growth parameters on the surface morphology of InAs quantum dots grown on GaAs/Ge/Si1-xGex/Si substrate Liang YY, Yoon SF, Ngo CY, Tanoto H, Chen KP, Loke WK, Fitzgerald EA |
431 - 433 |
Nano-crystalline Sb-based compound semiconductor formed on silicon Yamamoto N, Akahane K, Kawanishi T, Sotobayashi H |
434 - 437 |
MBE growth of VCSELs for high volume applications Jager R, Riedl MC |
438 - 441 |
VCSELs with monolithically integrated photodiodes for single-fiber bidirectional data transmission in the Gbit/s range Wahl D, Kern A, Stach M, Rinaldi F, Rosch R, Michalzik R |
442 - 445 |
Comparison of InP- and GaSb-based VCSELs emitting at 2.3 mu m suitable for carbon monoxide detection Boehm G, Bachmann A, Rosskopf J, Ortsiefer M, Chen J, Hangauer A, Meyer R, Strzoda R, Amann MC |
446 - 449 |
MBE growth of low threshold GaSb-based lasers with emission wavelengths in the range of 2.5-2.7 mu m Vizbaras K, Bachmann A, Arafin S, Sailer K, Sprengel S, Boehm G, Meyer R, Amann MC |
450 - 453 |
Quantum dot lasers grown by gas source molecular-beam epitaxy Gong Q, Chen P, Li SG, Lao YF, Cao CF, Xu CF, Zhang YG, Feng SL, Ma CH, Wang HL |
454 - 456 |
Power scalable 2.5 mu m (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy Paajaste J, Koskinen R, Nikkinen J, Suomalainen S, Okhotnikov OG |
457 - 459 |
Lasing in compact microdisks with InAs quantum dots in a well structure Hsing JY, Tzeng TE, Chuang KY, Lay TS, Kuo MY, Tsai YY, Hsu KS, Shih MH |
460 - 462 |
Growth and characterization of mid-infrared microdisk lasers operating in continuous-wave mode up to 2 degrees C Eibelhuber M, Schwarzl T, Pichler S, Heiss W, Springholz G |
463 - 465 |
Uncooled InSb mid-infrared LED used dislocation filtering of AlInSb layer Ueno K, Camargo EG, Morishita T, Moriyasu Y, Goto H, Kuze N |
466 - 469 |
The transition mechanisms of type-II GaSb/GaAs quantum-dot infrared light-emitting diodes Tseng CC, Lin WH, Wu SY, Chen SH, Lin SY |
470 - 472 |
High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (lambda=495 nm) Zhang M, Banerjee A, Bhattacharya P |
473 - 476 |
InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator Lin CH, Wu JP, Kuo YZ, Chiu YJ, Tzeng TE, Lay TS |
477 - 479 |
Wavelength tuning of GaAs/AlGaAs terahertz quantum cascade lasers by controlling aluminum content in barriers Samal N, Sadofyev YG, Annamalai S, Chen L, Samal A, Johnson SR |
480 - 483 |
Evaluation of injectorless quantum cascade lasers by combining XRD- and laser-characterisation Grasse C, Katz S, Bohm G, Vizbaras A, Meyer R, Amann MC |
484 - 487 |
Scaling the output power of quantum-cascade lasers with a number of cascades Fedosenko O, Chashnikova M, Machulik S, Kischkat J, Klinkmuller M, Aleksandrova A, Monastyrskyi G, Semtsiv MP, Masselink WT |
488 - 490 |
InP-based mid-infrared quantum-cascade laser grown on pre-patterned wafer Fedosenko O, Chashnikova M, Machulik S, Kischkat J, Klinkmuller M, Aleksandrova A, Monastyrskyi G, Semtsiv MP, Masselink TW |
491 - 495 |
InAs/AlInAs quantum-dash cascade structures with electroluminescence in the mid-infrared Liverini V, Bismuto A, Nevou L, Beck M, Gramm F, Muller E, Faist J |
496 - 500 |
Room temperature absorption in laterally biased quantum infrared detectors fabricated by MBE regrowth Guzman A, San-Roman R, Hierro A |
501 - 503 |
Gas source MBE grown Al0.52In0.48P photovoltaic detector Li C, Zhang YG, Gu Y, Wang K, Li AZ, Li H, Shan XM, Fang JX |
504 - 507 |
Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy Kawaharazuka A, Onomitsu K, Nishinaga J, Horikoshi Y |
508 - 510 |
Photovoltaic response of coupled InGaAs quantum dots Chuang KY, Tzeng TE, Liu YC, Tzeng KD, Lay TS |
511 - 517 |
MBE-Enabling technology beyond Si CMOS Chang P, Lee WC, Lin TD, Hsu CH, Kwo J, Hong M |
518 - 521 |
Achieving very high drain current of 1.23 mA/mu m in a 1-mu m-gate-length self-aligned inversion-channel MBE-Al2O3/Ga2O3(Gd2O3)/In0.75Ga0.25As MOSFET Lin TD, Chang P, Wu YD, Chiu HC, Kwo J, Hong M |
522 - 524 |
Effects of AlGaAsSb electron supply layer for InGaAs/InAlAs metamorphic HEMTs on GaAs substrate Geka H, Yamada S, Toita M, Nagase K, Kuze N |
525 - 528 |
InP/InGaAs/InP DHBT structures with graded composition base grown by gas source molecular beam epitaxy Teng T, Ai LK, Xu AH, Sun H, Zhu FY, Qi M |
529 - 533 |
MBE growth of high conductivity single and multiple AlN/GaN heterojunctions Cao Y, Wang KJ, Li GW, Kosel T, Xing HL, Jena D |