979 - 980 |
Misery loves company - shared features of neurodegenerative disorders Bezprozvanny I, Sorgato MC, Carafoli E |
981 - 987 |
Calcium's role as nuanced modulator of cellular physiology in the brain Frazier HN, Maimaiti S, Anderson KL, Brewer LD, Gant JC, Porter NM, Thibault O |
988 - 997 |
Emerging pathways driving early synaptic pathology in Alzheimer's disease Briggs CA, Chakroborty S, Stutzmann GE |
998 - 1004 |
Dysregulation of neuronal calcium homeostasis in Alzheimer's disease - A therapeutic opportunity? Popugaeva E, Pchitskaya E, Bezprozvanny I |
1005 - 1012 |
Astroglial calcium signalling in Alzheimer's disease Verkhratsky A, Rodriguez-Arellano JJ, Parpura V, Zorec R |
1013 - 1019 |
Calcium and Parkinson's disease Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E |
1020 - 1030 |
Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness Cieri D, Brini M, Cali T |
1031 - 1039 |
Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage? Patai R, Nogradi B, Engelhardt JI, Siklos L |
1040 - 1050 |
Keeping Our Calcium in Balance to Maintain Our Balance Mark MD, Schwitalla JC, Groemmke M, Herlitze S |
1051 - 1062 |
Striatal synaptic dysfunction and altered calcium regulation in Huntington disease Raymond LA |
1063 - 1068 |
Mitochondrial fragmentation in neuronal degeneration: Toward an understanding of HD striatal susceptibility Cherubini M, Gines S |
1069 - 1077 |
Mitochondrial Ca2+ handling in Huntington's and Alzheimer's diseases -Role of ER-mitochondria crosstalk Naia L, Ferreira IL, Ferreiro E, Rego AC |
1078 - 1083 |
Possible role of mitochondrial permeability transition pore in the pathogenesis of Huntington disease Quintanilla RA, Tapia C, Perez MJ |
1084 - 1095 |
Energy defects in Huntington's disease: Why "in vivo" evidence matters Liot G, Valette J, Pepin J, Flament J, Brouillet E |
1096 - 1109 |
(Neuro)degenerated Mitochondria-ER contacts De Mario A, Quintana-Cabrera R, Martinvalet D, Giacomello M |
1110 - 1115 |
Alpha-synuclein and beta-amyloid different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration Angelova PR, Abramov AY |
1116 - 1124 |
The plasma membrane calcium pumps: focus on the role in (neuro) pathology Brini M, Carafoli E, Cali T |
1125 - 1136 |
Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins Erana H, Venegas V, Moreno J, Castilla J |
1137 - 1142 |
Amyloid-beta and tau pathology following repetitive mild traumatic brain injury Edwards G, Moreno-Gonzalez I, Soto C |
1143 - 1147 |
Cellular prion protein as a receptor for amyloid-beta oligomers in Alzheimer's disease Salazar SV, Strittmatter SM |
1148 - 1155 |
Almost a century of prion protein(s): From pathology to physiology, and back to pathology Peggion C, Bertoli A, Sorgato MC |
1156 - 1165 |
A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease Reddy PH, Tonic S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP |
1166 - 1177 |
Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders Agarwal S, Yadav A, Chaturvedi RK |
1178 - 1186 |
The role of extracellular vesicles in neurodegenerative diseases Quek C, Hill AF |
1187 - 1193 |
Pathways to mitochondrial dysfunction in ALS pathogenesis Carri MT, D'Ambrosi N, Cozzolino M |
1194 - 1205 |
Tetrahydrocarbazoles decrease elevated SOCE in medium spiny neurons from transgenic YAC128 mice, a model of Huntington's disease Czeredys M, Maciag F, Methner A, Kuznicki J |