3593 - 3593 |
Microfluidics in system biology Lion N, Rossier JS, Girault HH |
3595 - 3601 |
On-line chemiluminescence detection for isoelectric focusing of heme proteins on microchips Huang XY, Ren JC |
3602 - 3608 |
A simple microfluidic system for efficient capillary electrophoretic separation and sensitive fluorimetric detection of DNA fragments using light-emitting diode and liquid-core waveguide techniques Wang SL, Fan XF, Xu ZR, Fang ZL |
3609 - 3614 |
Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector Abad-Villar EM, Kuban P, Hauser PC |
3615 - 3621 |
In-channel indirect amperometric detection of nonelectroactive anions for electrophoresis on a poly(dimethylsiloxane) microchip Xu JJ, Peng Y, Bao N, Xia XH, Chen HY |
3622 - 3630 |
Coupling on-chip solid-phase extraction to electrospray mass spectrometry through an integrated electrospray tip Yang YN, Li C, Lee KH, Craighead HG |
3631 - 3640 |
Electrospray interfacing of polymer microfluidics to MALDI-MS Wang YX, Zhou Y, Balgley BM, Cooper JW, Lee CS, DeVoe DL |
3641 - 3649 |
Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer Ninonuevo M, An HJ, Yin HF, Killeen K, Grimm R, Ward R, German B, Lebrilla C |
3650 - 3673 |
Chip electrospray mass spectrometry for carbohydrate analysis Zamfir AD, Bindila L, Lion N, Allen M, Girault HH, Peter-Katalinic J |
3674 - 3681 |
Utility of lab-on-a-chip technology for high-throughput nucleic acid and protein analysis Hawtin P, Hardern I, Wittig R, Mollenhauer J, Poustka A, Salowsky R, Wulff T, Rizzo C, Wilson B |
3682 - 3688 |
Analysis of amino acids and proteins using a poly(methyl methacrylate) microfluidic system Kato M, Gyoten Y, Sakai-Kato K, Nakajima T, Toyo'oka T |
3689 - 3696 |
Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology Hellmich W, Pelargus C, Leffhalm K, Ros A, Anselmetti D |
3697 - 3705 |
Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay Auerswald J, Widmer D, de Rooij NF, Sigrist A, Staubli T, Stokli T, Knapp HF |
3706 - 3715 |
Droplet fusion by alternating current (AC) field electrocoalescence in microchannels Chabert M, Dorfman KD, Viovy JL |
3716 - 3724 |
Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping Ward T, Faivre M, Abkarian M, Stone HA |
3725 - 3737 |
Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection Gagnon Z, Chang HC |
3738 - 3744 |
Dielectrophoresis induced clustering regimes of viable yeast cells Kadaksham J, Singh P, Aubry N |
3745 - 3757 |
3-D electrode designs for flow-through dielectrophoretic systems Park BY, Madou MJ |
3758 - 3764 |
Parallel mixing of photolithographically defined nanoliter volumes using elastomeric microvalve arrays Li NZ, Hsu CH, Folch A |
3765 - 3772 |
Method development and measurements of endogenous serine/threonine Akt phosphorylation using capillary electrophoresis for systems biology Babu CVS, Cho SG, Yoo YS |
3773 - 3779 |
Comparison of a pump-around a diffusion-driven, and a shear-driven system for the hybridization of mouse lung and testis total RNA on microarrays Vanderhoeven J, Pappaert K, Dutta B, Van Hummelen P, Desmet G |
3780 - 3788 |
Microfluidic devices for the analysis of apoptosis Qin JH, Ye NN, Liu X, Lin BC |
3789 - 3795 |
Effect of iron restriction on outer membrane protein composition of Pseudomonas strains studied by conventional and microchip electrophoresis Kustos I, Andrasfalvy M, Kustos T, Kocsis B, Kilar F |