2123 - 2123 |
Population balance modelling of particulate systems Hounslow MJ |
2125 - 2138 |
Particle size distribution by design Hill PJ, Ng KM |
2139 - 2156 |
Population balance modeling of flame synthesis of titania nanoparticles Tsantilis S, Kammler HK, Pratsinis SE |
2157 - 2168 |
A two-scale PBM for modeling turbulent flocculation in water treatment processes Ducoste J |
2169 - 2181 |
Dynamics analysis of an age distribution model of oscillating yeast cultures Zamamiri AM, Zhang YC, Henson MA, Hjortso MA |
2183 - 2191 |
Population balance modelling of granulation with a physically based coalescence kernel Liu LX, Litster JD |
2193 - 2209 |
A moment methodology for coagulation and breakage problems: Part 1 - analytical solution of the steady-state population balance Diemer RB, Olson JH |
2211 - 2228 |
A moment methodology for coagulation and breakage problems: Part 2 - Moment models and distribution reconstruction Diemer RB, Olson JH |
2229 - 2239 |
Method of moments with interpolative closure Frenklach M |
2241 - 2252 |
Solution of the population balance equation using constant-number Monte Carlo Lin YL, Lee K, Matsoukas T |
2253 - 2264 |
Error estimation and control for the steady state population balance equation: 1. An a posteriori error estimate Nicmanis M, Hounslow MJ |
2265 - 2278 |
A new set of population balance equations for microbial and cell cultures Fredrickson AG, Mantzaris NV |
2279 - 2285 |
A population balance framework for nucleation, growth, and aggregation McCoy BJ |
2287 - 2303 |
Population balances for particulate processes - a volume approach Verkoeijen D, Pouw GA, Meesters GMH, Scarlett B |
2305 - 2322 |
Process simulation of gas-to-particle-synthesis via population balances: Investigation of three models Muhlenweg H, Gutsch A, Schild A, Pratsinis SE |