1 - 11 |
Simulations of laminar non-premixed flames of methane with hot combustion products as oxidiser Sidey JAM, Mastorakos E |
12 - 30 |
An experimental and kinetic modeling study of n-dodecane pyrolysis and oxidation Banerjee S, Tangko R, Sheen DA, Wang H, Bowman CT |
31 - 41 |
Pyrolysis and ignition of a polymer by transient irradiation Vermesi I, Roenner N, Pironi P, Hadden RM, Rein G |
42 - 53 |
Hot surface ignition of n-hexane in air Menon SK, Boettcher PA, Ventura B, Blanquart G |
54 - 65 |
Premixed flame inhibition by C2HF3Cl2 and C2HF5 Pagliaro JL, Linteris GT, Babushok VI |
66 - 78 |
Di-n-buthylether, n-octanol, and n-octane as fuel candidates for diesel engine combustion Kerschgens B, Cai LM, Pitsch H, Heuser B, Pischinger S |
79 - 89 |
A numerical study of the effects of primary reference fuel chemical kinetics on ignition and heat release under homogeneous reciprocating engine conditions Fatouraie M, Karwat DMA, Wooldridge MS |
90 - 99 |
Combustion kinetics of laser irradiated porous graphite from imaging Fourier transform spectroscopy Acosta RI, Gross KC, Perram GP |
100 - 114 |
Characterizing spray flame-vortex interaction: A spray spectral diagram for extinction Franzelli B, Vie A, Ihme M |
115 - 121 |
Evolution of size distribution and morphology of carbon nanoparticles during ethylene pyrolysis Dewa K, Ono K, Watanabe A, Takahashi K, Matsukawa Y, Saito Y, Matsushita Y, Aoki H, Era K, Aoki T, Yamaguchi T |
122 - 137 |
Direct Numerical Simulations of premixed methane flame initiation by pilot n-heptane spray autoignition Demosthenous E, Borghesi G, Mastorakos E, Cant RS |
138 - 156 |
An ignition delay time and chemical kinetic modeling study of the pentane isomers Bugler J, Marks B, Mathieu O, Archuleta R, Camou A, Gregoire C, Heufer KA, Petersen EL, Curran HJ |
157 - 169 |
Reactivity and structure of soot generated at varying biofuel content and engine operating parameters Ess MN, Bladt H, Muhlbauer W, Seher SI, Zollner C, Lorenz S, Bruggemann D, Nieken U, Ivleva NP, Niessner R |
170 - 178 |
Soot oxidation-induced fragmentation: Part 2: Experimental investigation of the mechanism of fragmentation Ghiassi H, Jaramillo IC, Toth P, Lighty JS |
179 - 187 |
Soot oxidation-induced fragmentation: Part 1: The relationship between soot nanostructure and oxidation-induced fragmentation Ghiassi H, Toth P, Jaramillo IC, Lighty JS |
188 - 201 |
A char combustion sub-model for CFD-predictions of fluidized bed combustion - experiments and mathematical modeling Bibrzycki J, Mancini M, Szlek A, Weber R |
202 - 208 |
Scaling of a small scale burner fire whirl Hartl KA, Smits AJ |
209 - 219 |
Study on combustion and ignition characteristics of ethylene, propylene, 1-butene and 1-pentene in a micro flow reactor with a controlled temperature profile Kikui S, Nakamura H, Tezuka T, Hasegawa S, Maruta K |
220 - 240 |
A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames Uranakara HA, Chaudhuri S, Dave HL, Arias PG, Im HG |
241 - 257 |
High-repetition-rate planar measurements in the wake of a reacting jet injected into a swirling vitiated crossflow Panda PP, Roa M, Slabaugh CD, Peltier S, Carter CD, Laster WR, Lucht RP |
258 - 269 |
Independent component analysis of cycle resolved combustion images from a spark ignition optical engine Bizon K, Continillo G, Lombardi S, Sementa P, Vaglieco BM |
270 - 283 |
Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments Xiouris C, Ye TL, Jayachandran J, Egolfopoulos FN |
284 - 300 |
Transient combustion of a methane-hydrate sphere Bar-Kohany T, Sirignano WA |
301 - 316 |
A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element Yashwanth BL, Shotorban B, Mahalingam S, Lautenberger CW, Weise DR |
317 - 325 |
DC field response of one-dimensional flames using an ionized layer model Xiong Y, Park DG, Lee BJ, Chung SH, Cha MS |
326 - 336 |
Droplet ignition of approximately continuous liquid mixtures of n-paraffins and n-alkyl aromatics Sabourin SW, Boteler CI, Hallett WLH |
337 - 357 |
Nonlinear analysis of an acoustically excited laminar premixed flame Schlimpert S, Meinke M, Schroder W |
358 - 369 |
Numerical modeling of self-heating and self-ignition in a packed-bed of biomass using XDEM Mahmoudi AH, Hoffmann F, Markovic M, Peters B, Brem G |
370 - 381 |
Structure of premixed ammonia plus air flames at atmospheric pressure: Laser diagnostics and kinetic modeling Brackmann C, Alekseev VA, Zhou B, Nordstrom E, Bengtsson PE, Li ZS, Alden M, Konnov AA |
382 - 393 |
Skeletal mechanism reduction through species-targeted sensitivity analysis Stagni A, Frassoldati A, Cuoci A, Faravelli T, Ranzi E |
394 - 405 |
Numerical study of laminar flame speed of fuel-stratified hydrogen/air flames Shi X, Chen JY, Chen Z |
406 - 413 |
Oxidizer coarse-to-fine ratio effect on microscale flame structure in a bimodal composite propellant Isert S, Hedman TD, Lucht RP, Son SF |
414 - 426 |
On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction Diegelmann F, Tritschler V, Hickel S, Adams N |
427 - 436 |
A computational study of ethylene-air sooting flames: Effects of large polycyclic aromatic hydrocarbons Selvaraj P, Arias PG, Lee BJ, Im HG, Wang Y, Gao Y, Park S, Sarathy SM, Lu TF, Chung SH |
437 - 446 |
On lumped-reduced reaction model for combustion of liquid fuels Gao Y, Shan RQ, Lyra S, Li C, Wang H, Chen JH, Lu TF |
447 - 460 |
Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics Wang DM, Xin HH, Qi XY, Dou GL, Qi GS, Ma LY |
461 - 471 |
A numerical study of laminar flames propagating in stratified mixtures Zhang JC, Abraham J |
472 - 477 |
The critical flow velocity for radiative extinction in opposed-flow flame spread in a microgravity environment: A comparison of experimental, computational, and theoretical results Bhattacharjee S, Simsek A, Olson S, Ferkul P |
478 - 486 |
Stability of rich laminar hydrogen-air flames in a model with detailed transport and kinetic mechanisms Korsakova AI, Gubernov VV, Kolobov AV, Bykov V, Maas U |
487 - 493 |
Solid-flame: Experimental validation Shuck CE, Manukyan KV, Rouvimov S, Rogachev AS, Mukasyan AS |
494 - 507 |
Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H-2 combustion Shanbhogue SJ, Sanusi YS, Taamallah S, Habib MA, Mokheimer EMA, Ghoniem AF |
508 - 516 |
A diffuse interface method for simulating the dynamics of premixed flames Sun K, Yang S, Law CK |
517 - 531 |
Investigation of unsteady behaviors of forward and opposed flow combustion of solid fuel Roy NC, Nakamura Y |
532 - 539 |
Decomposition of ethylamine through bimolecular reactions Altarawneh M, Almatarneh MH, Marashdeh A, Dlugogorski BZ |
540 - 556 |
Efficient calculation of multicomponent diffusion fluxes based on kinetic theory Arias-Zugasti M, Garcia-Ybarra PL, Castillo JL |
557 - 575 |
Modeling of NO formation in low pressure premixed flames Lamoureux N, El Merhubi H, Pillier L, de Persis S, Desgroux P |