화학공학소재연구정보센터
IEEE Transactions on Energy Conversion, Vol.25, No.2, 441-449, 2010
Reducing Harmonic Eddy-Current Losses in the Stator Teeth of Interior Permanent Magnet Synchronous Machines During Flux Weakening
Interior permanent magnet (IPM) synchronous machines can experience large harmonic eddy-current losses in the stator teeth under flux-weakening operation, significantly depressing the efficiency of these machines at high operating speeds. This paper presents a new analytical/finite-element hybrid design approach to reduce the harmonic eddy-current losses in IPM machine stator teeth during flux-weakening operation. The proposed technique achieves this objective by three steps: 1) developing an analytical index for the harmonic eddy-current losses in IPM machine stator teeth; 2) designing the spatial distribution of the rotor MMF to minimize the analytical index; and 3) synthesizing the rotor geometry to implement the desired rotor MMF function while maintaining the basicmachine characteristics unchanged. It will be shown that two-layer rotors, if properly optimized, are significantly more effective than one-layer rotors for the purpose of reducing the harmonic eddy-current losses in IPM machine stator teeth during flux-weakening operation at high speeds.