화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.5, 573-578, September, 2012
아미노실란으로 개질된 목분/PVC/나노점토 복합재의 기계적 특성
Mechanical Properties of Aminosilane-Treated Wood Flour/PVC/Nanoclay Composites
E-mail:
초록
일반적으로 목분/PVC 복합재가 갖는 대부분의 물리적 특성은 소수성인 PVC와 친수성인 목분 사이의 낮은 계면결합력으로 인해 순수한 PVC에 비해서도 낮다. 그러므로 본 연구에서는 목분/PVC의 계면결합력을 향상시키기 위해 세 가지 아미노실란을 각각 사용하여 목분을 개질하였으며, 아미노실란으로 개질된 목분, 무중금속 PVC 컴파운드, 나노점토를 용융혼합하여 환경친화적인 목분/PVC/나노점토 복합재를 제조하였다. 목분의 아미노실란 개질 및 나노점토의 첨가가 복합재의 기계적 특성에 미치는 영향을 조사하였다. 복합재의 기계적 특성은 만능재료시험기, 아이조드 충격시험기, DMA, TMA를 이용하여 조사하였다. 아미노실란으로 개질된 목분을 이용한 복합재의 인장특성은 순수한 목분을 이용한 복합재의 인장특성보다 훨씬 높았다. 또한 적은 양의 나노점토가 복합재의 기계적 특성을 향상시켰다. 아미노실란으로 개질된 목분과 나노점토를 사용함으로써 목분/PVC 복합재의 성능이 크게 향상되었다.
In general, most physical properties of wood/polyvinyl chloride (PVC) composites are lower than those of corresponding neat PVC resin because of poor interfacial adhesion between the hydrophilic wood flour and hydrophobic PVC. Therefore, in this study, we treated wood flour with three aminosilanes to improve wood/PVC interfacial adhesion strength, and eco-friendly wood/PVC/nanoclay composites were prepared by melt blending the aminosilane-treated wood flour, a heavy metal free PVC compound, and a type of nanoclay. The effects of treating wood flour with the aminosilanes and adding the nanoclay on the mechanical properties of the composites were investigated. Mechanical properties of the composites were investigated by universal testing machine (UTM), izod impact tester, dynamic mechanical analyzer (DMA), and thermomechanical analyzer (TMA). The tensile properties of the composites with the aminosilane-treated wood flour were considerably higher than those of the composites with neat wood flour. Furthermore, a small amount of the nanoclay improved mechanical properties of the composites. The performance of the wood/PVC composites was considerably improved by using the aminosilane-treated wood flour and the nanoclay.
  1. Lee H, Kim DS, J. Appl. Polym. Sci., 111(6), 2769 (2009)
  2. Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME, Polym. Compos., 28, 98 (2007)
  3. Schnieder MH, Wood Fiber Sci., 26, 142 (1994)
  4. Lu JZ, Wu Q, McNabb HS, Wood Fiber Sci., 32, 88 (2000)
  5. Shah BL, Matuana LM, Heiden PA, J. Vinyl Addit.Techn., 11, 160 (2005)
  6. Zhao Y, Wang K, Zhu F, Xue P, Jia M, Polym. Degrad.Stabil., 91, 2874 (2006)
  7. Jiang H, Kamsem DP, J. Vinyl Addit. Techn., 10, 59 (2004)
  8. Takatani M, Okamoto T, Mol. Cryst. Liq. Cryst., 483, 326 (2008)
  9. Guo J, Tang YN, Xu ZM, J. Hazard. Mater., 179(1-3), 203 (2010)
  10. Li QX, Matuana LM, J. Appl. Polym. Sci., 88(2), 278 (2003)
  11. Ismail H, Khalil HPSA, Polym. Test., 20, 33 (2000)
  12. Bengtsson M, Oksman K, Compos. Sci. Technol., 66, 2177 (2006)
  13. Cui YH, Lee S, Tao J, J. Vinyl Addit. Techn., 14, 211 (2008)
  14. Park B, Kim DS, Polym.(Korea), 35(2), 124 (2011)
  15. Ren J, Huang Y, Liu Y, Tang X, Polym. Test., 24, 316 (2005)
  16. George J, Sreekala MS, Thomas S, Polym. Eng. Sci., 41(9), 1471 (2001)
  17. Kim Y, White JL, J. Appl. Polym. Sci., 90(6), 1581 (2003)
  18. Kovarova L, Kalendova A, Gerard JF, Malac J, Simonik J, Weiss Z, Macromol. Sympo., 221, 105 (2005)
  19. Maldas D, Kokta BV, Raj RG, Daneault C, Polymer., 29, 1255 (1988)
  20. Matuana LM, Woodhams RT, Balatinecz JJ, Park CB, Polym. Compos., 19, 446 (1998)
  21. Wilkes CE, Summers JW, Daniels CA, PVC Handbook, Carl Hanser Verlag, Munich (2005)