화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.5, 628-636, September, 2012
동적 광산란법에 의한 폴리(비닐 알코올)/디메틸설폭사이드/폴리스티렌 라텍스 계에서의 고분자 사슬 배제층 측정
Measurement of Polymer Chain Depletion Layer in the Poly(vinyl alcohol)/Dimethyl Sulfoxide/Polystyrene Latex System by Dynamic Light Scattering
E-mail:
초록
폴리(비닐 알코올)(PVA)/디메틸설폭사이드 용액에 폴리스티렌 라텍스 구형입자(직경 범위: 100~300 nm)를 소량 첨가한 뒤, 구형 입자 표면에 형성된 사슬 배제층 두께가 사슬의 농도에 따라 어떻게 의존하는지를 동적 광산란법으로 조사하였다. 묽은 용액 농도에서는 배제층의 두께가 PVA 사슬의 회전반경의 63±3% 수준에서 일정하게 유지되었었으나 준희박 용액 농도의 초기 영역인 1.5≤C[η]≤3 범위에서는 배제층 두께 δ의 고분자 농도 의존성은 이론치 -0.75와 비슷한 δ~C^(-0.8)로 얻어졌다. 보다 높은 농도 C[η]>3 이상에서는 배제층의 두께가 급격히 감소하는 것으로 나타났는데 그 이유는 탐침입자간 Oosawa 인력에 의하여 유발된 응집효과가 그 원인인 것으로 설명할 수 있었다.
The polymer concentration dependence of depletion layer was investigated by means of dynamic light scattering after the very small amount of polystyrene spherical latex particles was added into the matrix solution of poly(vinyl alcohol)(PVA)/dimethyl sulfoxide. At the dilute regime, the magnitude of depletion layer kept constant at the level of 63±3% of the radius of gyration of the corresponding PVA chain. Next, at the early semi-dilute regime of 1.5≤C[η]≤3, polymer concentration dependence of the layer thickness δ was obtained as δ~C^(-0.8), and this experimental value was very close to theoretical one of -0.75. However it was observed above C[η]>3 that its thickness decreased abruptly, and this was ascribed to aggregation effect of latex particles which was driven by Oosawa type attractive interaction.
  1. Napper D, Polymeric Stabilization of Colloidal Dispersion, Academic Press, London (1983)
  2. Verkman AS, Trends Biochem. Sci., 27, 27 (2002)
  3. Varogui R, Dejardin P, J. Chem. Phys., 66, 439 (1977)
  4. Sheutjens TMHM, Fleer GJ, J. Phys. Chem., 84, 178 (1980)
  5. Stuart M, Waajen F, Cosgrove T, Vincent B, Crowley T, Macromolecules., 17, 1825 (1984)
  6. Vaynberg KA, Wagner NJ, Sharma R, Martic P, J. Colloid Interface Sci., 205(1), 131 (1998)
  7. Donath E, Krabi A, Nirschl M, Shilov VM, Zharkikh MI, Vincent B, J. Chem. Soc. Faraday Trans., 93, 115 (1997)
  8. Hoogendam CW, Peters JCW, Tuinier R, de Keizer A, Stuart MAC, Bijsterbosch BH, J. Colloid Interface Sci., 207(2), 309 (1998)
  9. Asakura S, Oosawa F, J. Chem. Phys., 22, 1255 (1954)
  10. Asakura S, Oosawa F, J. Polym. Sci., 33, 183 (1958)
  11. Vrij A, Pure & Appl. Chem., 48, 471 (1976)
  12. Fleer GJ, Skvortsov AM, Tuinier R, Macromolecules, 36(20), 7857 (2003)
  13. Hu J, Wang R, Xue G, J. Phys. Chem., 110, 1872 (2006)
  14. Zhivkov AM, J. Colloid Interface Sci., 313(1), 122 (2007)
  15. Fleer GJ, Skvortsov AM, Tuinier R, Macromol. Theory Simul., 16, 531 (2007)
  16. Fan TH, Dhont KG, Tuinier R, Phys. Rev. E., 75, 11803 (2007)
  17. Louis AA, Bolhuis PG, Meijer EJ, Hansen JP, J. Chem. Phys., 116(23), 10547 (2002)
  18. Donath E, Krabi A, Allan G, Vincent B, Langmuir, 12(14), 3425 (1996)
  19. Vincent B, Colloids Surf., 50, 241 (1990)
  20. Baumler H, Neu B, Iovtchev S, Budde A, Kiesewetter H, Latza R, Donath E, Colloids Surf. A., 149, 389 (1999)
  21. Baumler H, Donath E, Krabi A, Knippel W, Budde A, Kiesewetter H, Biorheology., 33, 333 (1996)
  22. Donath E, Budde A, Knippel E, Baumler H, Langmuir, 12(20), 4832 (1996)
  23. Lee LT, Guiselin O, Lapp A, Farnoux B, Penfold J, Phys.Rev. Lett., 67, 2838 (1991)
  24. Eom HS, Park IH, Polym.(Korea), 34(5), 415 (2010)
  25. Brown W, Dynamic light scattering: The Method and Some Application, Clarendon, Oxford (1993)
  26. Kulicke WM, Keniewske R, Rheol. Acta., 23, 75 (1984)
  27. Ren A, Ellis PE, Ross-Murphy SB, Wang Q, Wood PJ, Carbohydr. Polym., 53, 401 (2003)
  28. Huglin MG, Light Scattering from Polymer Solutions, Academic, New York (1972)
  29. Glatter O, Kratky O, Small Angle X-ray Scattering, Academic Press, New York (1982)
  30. Graessley WW, Polymeric Liquids & Network: Structure and Properties, Garl and Science, New York (2004)