International Polymer Processing, Vol.21, No.1, 3-16, 2006
Melt compounding of polymeric nanocomposites
The clay-containing polymeric nanocomposites (CPNC) can be visualized as binary mixtures of strongly interacting, inorganic, plate-like molecules dispersed in a polymeric matrix. To be successful, one must ascertain the thermodynamics, which controls CPNC structure on the molecular level. In this work dispersion of organoclay (Cloisite 15A, C15A) in polyamide 6 (PA 6) or in polypropylene (PP) is discussed. The PA based CPNC's contained two components: polymer and organoclay, whereas those based on PP in addition contained a mixture of two maleated polypropylene's (PP-MA), as a compatibilizer The melt compounding was carried out either in a single-screw extruder (SSE), or a twin-screw extruder (TSE). Both compounding lines were used with or without the extensional flow mixer (EFM). Furthermore, two versions of EFM were evaluated - one commercial, designed for polymer homogenization and blending, and the other designed for dispersing nano-particles. It was found that addition of EFM significantly improved clay dispersion. Better dispersion was found compounding the CPNC's in a SSE + EFM than in TSE with or without EFM. The best results were obtained using SSE with the new EFM having a relatively small gap between the convergent-divergent plates. C15A was fully exfoliated in PA 6 matrix. The results in PP/PP-MA matrix were less spectacular, but again the highest degree of dispersion was obtained using SSE + new EFM with a small gap. Tensile, flexural and impact properties were measured and evaluated.