화학공학소재연구정보센터
Journal of Adhesion, Vol.80, No.4, 247-261, 2004
When less is more: Experimental evidence for tenacity enhancement by division of contact area
Most recent data on hairy systems demonstrated their excellent adhesion and high reliability of contact. In contrast to smooth systems, some hairy systems seem to operate with dry adhesion and do not require supplementary fluids in the contact area. Contacting surfaces in such devices are subdivided into patterns of micro- or nanostructures with a high aspect ratio (setae, hairs, pins). The size of singlepoints gets smaller and their density gets higher as the body mass increases. Previous authors explained this general trend by applying the JKR theory, according to which splitting up the contact into finer subcontacts increases adhesion. Fundamental importance of contact splitting for adhesion on smooth and rough substrata has been previously explained by a very small effective elastic modulus of the fibre array. This article provides the first experimental evidence of adhesion enhancement by division of contact area. A patterned surface made out of polyvinylsiloxane (PVS) has significantly higher adhesion on a glass surface than a smooth sample made out of the same material. This effect is even more pronounced on curved substrata. An additional advantage of patterned surfaces is the reliability of contact on various surface profiles and the increased tolerance to defects of individual contacts.