Journal of Adhesion Science and Technology, Vol.16, No.14, 1957-1978, 2002
Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermal studies of the new melamine fiber
This paper reports the characterization of unaged and aged melamine fibers using various characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal analysis. Since melamine fiber is a relatively new fiber, very few studies on its characterization have been made. Morphological studies of the fiber surface using SEM display die lines running along the filament surface, which are characteristics of synthetic fibers and generally occur during spinning of the molten prepolymer through the spinnerets. AFM studies show that the surface of a melamine fiber filament contains a large number of hills and valleys, which are triangular in shape. AFM roughness analysis shows that melamine fiber surface is considerably rough which may aid in adhesion of the fiber with polymeric matrices. Ageing causes an increase in the surface roughness with simultaneous increase in the crystallinity of the fiber from 19.4% to 22.6%. In XPS studies, high concentrations of carbonyl and hydroxyl groups on the filament surface have been detected. Ageing causes a reduction in the hydroxyl group concentration and an increase in the carbonyl group concentration due to surface oxidation. The reduction in the surface hydroxyl groups due to ageing has also been detected in the Fourier-Transform infrared (FT-IR) spectra of the aged fibers. Thermogravimetric (TG) studies reveal a high thermal stability of the melamine fiber even in an oxidative environment such as air.
Keywords:melamine fiber;ageing;morphology;atomic force microscopy;crystallinity;X-ray diffraction;X-ray photoelectron spectroscopy;thermal stability