Journal of Adhesion Science and Technology, Vol.26, No.1-3, 317-329, 2011
Adhesion Performance and Microscope Morphology of UV-Curable Semi-interpenetrated Dicing Acrylic PSAs in Si-Wafer Manufacture Process for MCP
UV-curable acrylic pressure-sensitive adhesives (acrylic PSAs) have many applications in industry. As the Si-wafers become thinner, the acrylic PSAs for MCP need to show proper adhesion and leave little residue on the Si-wafer after UV irradiation when released from the dicing tapes. Strong adhesion is required in the dicing process to hold the Si-wafer before UV irradiation. On the other hand, weak adhesion strength is required after UV irradiation to prevent damage to the Si-wafers during the pick-up process. This study employed semi-interpenetrating polymer network-structured dicing of acrylic PSAs in the Si-wafer manufacture process. The binder PSAs contained 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AA). The adhesion performance of the peel strength on a Si-wafer was examined as a function of the UV dose. The results showed that the abovementioned two requirements were achieved using semi-IPN dicing acrylic PSAs using a hexafunctional acrylate monomer and a UV-curing system. FE-SEM and XPS revealed little residue on the wafer after removing the tape. This paper suggests the optimal conditions for the curing agent, the additional hexafunctional monomer, photoinitiator and the coating thickness. (C) Koninklijke Brill NV, Leiden, 2012