화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.24, No.10, 1066-1072, 1994
Ionic-Conductivity and Lithium Electrode Stability in Hydrin-LiBF4 Elastomers
Three commercial elastomers, Hydrin C, Hydrin H and Hydrin T, which contain ethylene oxide and epichlorohydrin repeat units, have been investigated as polymer electrolytes in contact with lithium electrode. The influence of polyethylene glycol and fine particles of zeolite on ionic conductivity of Hydrin-LiBF4 electrolytes and the exchange current density of the lithium electrode reaction has been studied by using impedance spectroscopy and cyclic voltammetry. The specific conductivity of the elastomeric electrolyte is about 10(-5) S cm-1 at room temperature when polyethylene glycol is present. But the mechanical stability of the film is less. The addition of zeolite particles to the elastomers also improves the specific conductivity. When present in low concentrations, the zeolite particles show catalytic effect on the electrochemical reaction at lithium electrode at ambient temperature. The lithium electrode reaction is reversible and the electrolyte possesses good electrochemical stability.