Journal of Canadian Petroleum Technology, Vol.46, No.10, 49-54, 2007
Characterizing moisture and gas content of coal by low-field NMR
Coalbed Methane (CBM) shows great potential to be an important energy source. One key factor for the successful development of CBM processes is to characterize coal on its moisture and gas content. Usually, the moisture and gas content of coal, are determined from laboratory analysis. Low-field nuclear magnetic resonance (NMR) is a relatively new technique used in logging and in the analysis of fluids contained in reservoir rocks. This paper investigates the potential for coal characterization by low-field NMR. Low-field NNM detects hydrogen-bearing molecules and, in reservoir rock samples, distinguishes between 'free' bulk fluid and 'bound' surface fluid. Coal contains free water in the cleats as well as moisture that forms an integral part of the coal structure. Methane gas is a light hydrocarbon gas and coal contains free methane gas in fractures and adsorbed methane in internal:, surfaces. NMR characterization of moisture and adsorbed gas in coal and implications for moisture, adsorption isotherm and gas content measurements are explored. Experiments of moisture-free coal, moist coal and coal/water mixtures indicated drastically different spectra. From these spectra, free and bound water could be estimated using a methodology that is currently applied in clay-rich formations. In this paper, two sets of data are presented. First, measurements at ambient conditions provided a reference to other conventional moisture and cutoff data. Second, a high-pressure cell for the measurement of adsorbed coal was used and comparisons were, made. Coal samples in the form of powder and chunk were used. The paper focuses on the methods and results to date.