Journal of Canadian Petroleum Technology, Vol.47, No.6, 40-47, 2008
Stability of microbubble-based drilling fluids under downhole conditions
Colloidal gas aphrons (CGA) have the unique ability to form a bridge in the pores of reservoirs, which stops fluid invasion. Sizing microbubbles in accordance with the rock pore size distribution is imperative for effective sealing during drilling. The effects of time, temperature and pressure on the stability and size of the microbubbles needs to be better understood in order to design a fluid that will sufficiently block the pores of the formation for extended periods. In this study, the effects of time, pressure and temperature on the size of microbubbles and the stability of microbubble (CGA)-based drilling fluids were investigated. The change in the CGA diameter with time was determined by using a microscopic imaging technique. Effects of base fluid viscosity and surfactant concentration on the size and stability of the microbubbles were also investigated.