Journal of Canadian Petroleum Technology, Vol.49, No.1, 16-21, 2010
Fully Coupled Numerical Modelling of Ground Surface Uplift in Steam Injection
In enhanced oil recovery, steam injection involves high stresses, pressures, temperatures and volume changes. Traditional reservoir simulation fails to predict associated transient ground surface movements because it does not consider coupled geomechanical effects. We present a fully-coupled, thermal half-space model using a hybrid DDFEM method, in which a simultaneous finite element method (FEM) solution is adopted for the reservoir and the surrounding thermally affected zone, and a displacement discontinuity (DD) method used for the elastic, non-thermal zone. This approach provides transient ground surface movements in a natural manner.