화학공학소재연구정보센터
Journal of Chemical and Engineering Data, Vol.50, No.1, 92-101, 2005
Thermodynamics of phase and chemical equilibrium in a strongly nonideal esterification system
In this study, the reaction equilibrium of the reversible esterification of acetic acid with 1-butanol giving 1-butyl acetate and water was investigated. The entire composition space including the miscibility gap was covered at temperatures relevant for technical processes (353.15 K to 393.15 K). The experiments were carried out in a multiphase batch reactor with online gas chromatography and in a batch reactor with quantitative H-1 NMR spectroscopy, respectively. The thermophysical database available in the literature was complemented by measurements of liquid-liquid and vapor-liquid equilibria. On the basis of that comprehensive data, thermodynamically consistent models of the reaction equilibrium were developed which predict the concentration dependence of the mass action law pseudoequilibrium constant, K-x. The following different modeling approaches are compared: the G(E) models NRTL and UNIQUAC as well as the PC-SAFT equation of state and the COSMO-RS model. All of them can successfully be used, the COSMO-RS model, however, has the highest predictive power.