Journal of Applied Electrochemistry, Vol.28, No.3, 359-368, 1998
Macroscopic analysis of polarization characteristics of gas-diffusion electrodes in contact with liquid electrolytes Part I : First order reactions
In this paper principles of gas-liquid chemical reaction engineering are applied to analyse the current-potential characteristics of gas-diffusion electrodes (GDE) in contact with liquid electrolytes. A macroscopic electrode model is formulated which accounts for mass transfer in the external diffusion films, in the gas layer and in the flooded layer. The set of model equations accounts for material balances, mass transport kinetics and Butler-Volmer polarization kinetics. Several dimensionless parameter groups are introduced which allow a compact reformulation of the proposed model. For first order reactions its solution can be derived analytically. The introduced parameter groups allow a classification of the different operating modes of a GDE, that is, slow reaction, fast reaction and instantaneous reaction.