화학공학소재연구정보센터
Journal of Energy Resources Technology-Transactions of The ASME, Vol.124, No.2, 77-82, 2002
Effects of geometry on the performance of a downhole orbital vibrator
The influence of geometry on the pressure field within the confined, water-filled annulus between a central, vibrating cylinder and an outer, rigid enclosure is determined. A two-dimensional model is constructed using the finite element (FE) method and parameters are identified to characterize the eccentricity of the nominal cylinder position, the size of the annulus relative to the inner cylinder and the degree to which the annulus is not circular (i.e., it is elliptic). The FE solution is verified using a closed-form solution for the special case of a concentric cylinder and annulus. It is shown that the system acts as a force multiplier. Anayses of the asymmetrical geometries indicate that while the pressure field on the surface of the cylinder and enclosure can be highly asymmetric, the system is relatively insensitive to minor variations in annulus shape except when the vibrating cylinder is not centrally located within the fluid region or the annulus size itself is small.