화학공학소재연구정보센터
Journal of Solar Energy Engineering-Transactions of The ASME, Vol.124, No.4, 432-445, 2002
Analysis of the structural and inflow data from the list turbine
The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the spectrum of loads on wind turbines. A heavily instrumented Micon 65/13M turbine with Phoenix 8m blades is being used as the test turbine for the first measurement campaign of this program. This turbine is located in Bushland, TX, a test site that exposes the turbine to a wind regime representative of a Great Plains commercial site. The turbine and inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and seven to characterize the time-varying state of the turbine. In this paper, an analysis of the structural and inflow data is presented. Particular attention is paid to the determination of the various structural loads on the turbine, long-term fatigue spectra and the correlation of various inflow descriptors with fatigue loads. For the latter analysis, the inflow is described by various parameters, including the mean, standard deviation, skewness and kurtosis of the hub-height horizontal wind speed, turbulence intensity, turbulence length scales, Reynolds stresses, local friction velocity, Obukhov length, and the gradient Richardson number. The fatigue load spectrum corresponding to these parameters is characterized as an equivalent fatigue load. A regression analysis is then used to determine which parameters are correlated to the fatigue loads. The results illustrate that the vertical component of the inflow is the most important of the secondary inflow parameters with respect to fatigue loads. Long-term fatigue spectra illustrate that extrapolation of relatively short-term data to longer times is consistent for the data reported here.