Journal of the American Ceramic Society, Vol.94, No.8, 2680-2687, 2011
Low-to-Medium-Frequency AC Impedance Spectroscopy Investigations of Nanocrystalline Calcium Silicate Hydrate Dried Powders
Low-to-medium-frequency range impedance spectroscopy was used to investigate two series of dried calcium silicate hydrates with or without aluminum atoms, C-S-H and C-A-S-H. Over four decades in frequency, sample Nyquist plots were fitted by adopting an equivalent circuit using constant phase elements (CPE). Conductivity values of the order of 10 (9)-10 (10) S/cm were obtained at 316 K. The presence of CPE characteristic of the depleted semicircle at high frequency was related to a fractal dimension ranging from 2.4 up to 2.7. Above 316 K, the impedance spectra behaved unpredictably due to the dehydration process, while below 316 K the behavior was followed by adopting the modulus loss factor. The associated peak maximum variation is of the Arrhenius-type. The entire behavior may be interpreted by ionic motion and charge accumulation in addition to dielectric polarization at the grain boundaries associated to low fractal surface.