화학공학소재연구정보센터
Materials Research Bulletin, Vol.47, No.1, 6-11, 2012
Large-scale and shape-controlled synthesis and characterization of nanorod-like nickel powders under microwave radiation
The nanorod-like nickel powders were fabricated via hydrothermal liquid phase reduction route under microwave irradiation with hydrazine hydrate as a reducing agent as well as polyvinyl alcohol as a dispersant and/or structure directing agent. The morphology and structure of as-prepared products could be easily tuned by adjusting process parameters such as pH value and microwave irradiation time. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscopy and selected-area electron diffraction (SAED). The results demonstrated that pure nickel powders with face-centered cubic (fcc) structure were prepared at relatively mild condition and no characteristic peaks of nickel oxide in the XRD pattern were found. The phenomenon of lattice expansion for Ni powders was explained in details according to the XRD theory. As-prepared Ni sample was of obvious shape anisotropy with length diameter ratio of 5. Magnetic measurements shown that the magnetic properties of nanorod-like (fcc) Ni powders were quite different from those of hexagonal closed-packed (hcp) Ni nanoparticles. Furthermore, it had more strong ferromagnetic properties than that of Ni powders both bulk and nanoparticles. (C) 2011 Elsevier Ltd. All rights reserved.