Applied Chemistry for Engineering, Vol.23, No.5, 485-489, October, 2012
상용 V2O5/TiO2 촉매의 바나듐 함량이 SCR 반응성과 SO2 내구성에 미치는 영향
Effect of Vanadium Oxide Loading on SCR Activity and SO2 Resistance over TiO2-Supported V2O5 Commercial De-NOx Catalysts
E-mail:
초록
바나듐 함량이 각기 다른 소각로 및 발전소에 사용된 6개의 국내외 상용촉매를 이용하여 바나듐 함량이 SCR활성 및 SO2 내구성에 미치는 영향을 조사하였다. XRD, Raman, ICP, BET 분석결과 6개 상용촉매 모두 아나타제 TiO2에 바나듐이 고루 담지된 촉매이며, WO3와 SiO2가 포함되어 있었다. SCR활성에 있어서, 바나듐함량이 증가할수록 SCR활성은 증가하는 경향이 있고, WO3가 초촉매로 첨가된 촉매가 더 높은 SCR 활성을 보인다. SO2 내구성에 있어서, 촉매의 바나듐함량이 증가할수록 부정적인 요소로 작용한다. 그러나 WO3와 SiO2첨가는 부정적인 요소를 억제한다. 특히, SiO2가 첨가된 촉매는 WO3이 첨가된 촉매 보다는 SO2에 대한 내구성을 더욱 증가시킨다.
We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and SO2 resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain TiO2 (anatase) supported V2O5 added WO3 and SiO2. The SCR activity of the catalysts increased by increasing either the V2O5 or the WO3 loading amounts; the SCR activity of the catalysts added WO3 is higher than that of WO3-free catalysts. As the V loading amount in the catalyst increased, the SO2 durability decreased. The V2O5 supported TiO2 catalyst added WO3 and SiO2 inhibits the deactivation process by SO2. The SO2 resistance of catalysts added SiO2 is higher than that of catalysts added WO3.
- Bosch H, Janssen F, Catal. Today., 2, 369 (1988)
- Alemany LJ, Berti F, Busca G, Ramis G, Robba D, Toledo GP, Trombetta M, Appl. Catal. B: Environ., 10(4), 299 (1996)
- Cho SM, Chem. Eng. Prog. Air Pollut. Control., 90, 39 (1994)
- Wood SC, Chem. Eng. Prog. Air Pollut. Control., 90, 33 (1994)
- Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS, Appl. Catal. B: Environ., 78(3-4), 301 (2008)
- Park KH, Lee JY, Hong SH, Choi SH, Hong SC, J. Korean Ind. Eng. Chem., 19(4), 376 (2008)
- Wachs IE, Catal. Today, 27(3-4), 437 (1996)
- Giakoumelou L, Fountzoula C, Kordulis C, Boghosian S, J. Catal., 239(1), 1 (2006)
- Kompio PGW, Bruckner A, Hipler F, Auer G, Loffler E, Grunert W, J. Catal., 286, 237 (2012)
- Dunn JP, Koppula PR, Stenger HG, Wachs IE, Appl. Catal. B: Environ., 19(2), 103 (1998)
- Panagiotou GD, Petsi T, Bourikas K, Kordulis C, Lycourghiotis A, J. Catal., 262(2), 266 (2009)
- Petsi T, Panagiotou GD, Garoufalis CS, Kordulis C, Stathi P, Deligiannakis Y, Lycourghiotis A, Bourikas K, Chem. Eur.J., 15, 13090 (2009)
- Bourikas K, Stavropoulos J, Garoufalis CS, Kordulis C, Petsi T, Lycourghiotis A, Chem. Eur. J., 17, 1201 (2011)
- Petsi T, Panagiotou GD, Bourikas K, Kordulis C, Voyiatzis GA, Lycourghiotis A, Chem. Cat. Chem., 3, 1072 (2011)
- Panagiotou GD, Petsi T, Bourikas K, Kalampounias AG, Boghosian S, Kordulis C, Lycourghiotis A, J. Phys. Chem. C., 114, 11868 (2010)
- Lietti L, Forzatti P, Bregani F, Ind. Eng. Chem. Res., 35(11), 3884 (1996)
- Joakim TS, Thøgersen R, White N, Ammonium bisulphate inhibition of SCR catalysts, Haldor Topsoe Inc.
- Kobayashi M, Kuma R, Masaki S, Sugishima N, Appl. Catal. B: Environ., 60(3-4), 173 (2005)