화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.57, No.4, 401-411, 1995
Cure Characterization of Triglycidyl Epoxy Aromatic Amine Systems
The curing of triglycidyl para-aminophenol (TGPAP) epoxy resin with three aromatic amine hardeners, diaminodiphenye sulphone (DDS), pyridinediamine (PDA), and toluenediamine (TDA), has been investigated. A series of isothermal cures was conducted and analyzed by Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC). The chemical reactions occurring during cure were monitored at different temperatures by qualitative and quantitative estimation of different groups in the IR spectra, and the ratio of rate constants (k(2)/k(1)) were evaluated. Dynamic DSC analysis of TGPAP/TDA resulted in two exothermal peaks, indicating cure kinetics different from those of TGPAP/DDS and TGPAP/PDA systems, which gave a single exothermal peak. Various kinetic parameters such as total heat of reaction Delta H’, activation energy E(a). Frequency factor z, and order of reaction n were evaluated for all the three systems. From the initial kick-off temperatures and activation energy values it was concluded that the rate of curing followed the order TDA > PDA > DDS. The reaction conversions during cure, evaluated from IR analysis, were exactly the same as those obtained from DSC Borchardt-Daniels kinetics. Using this model, the plots of time vs. temperature for different conversions were constructed for all the three systems; on the basis of these, the cure cycles can be fixed.