화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.58, No.2, 367-374, 1995
Interfacial Aspects of Strength Development in Poly(Methyl Methacrylate)-Based Latex Systems
Film formation from poly(methyl methacrylate) (PMMA) latex and PMMA copolymer latexes incorporating N-(iso-butoxymethyl)acrylamide (IBMA) or methacrylic acid (MAA) has been investigated in terms of the development of tensile strength as a function of annealing time and temperature. Tensile strength is developed through a combination of macromolecular interdiffusion and interfacial crosslinking. The relative rates of interdiffusion vs. crosslinking reactions were studied as a function of temperature and the chemical nature and concentration of the IBMA and MAA functional groups. For low concentrations of these two functional monomers it appears that polymer chain interdiffusion between adjacent latex particles during the film formation process dominates the kinetics of strength development. However, at higher IBMA and MAA concentrations, the higher glass transition temperature at the latex particle surface and intraparticle crosslinking hinders interdiffusion, as reflected by differences in the power law exponent values obtained from the log-log dependence of tensile strength on annealing time. The power law exponents were higher in the case of PMMA than for both IBMA- and MAA-containing copolymers. There was a greater influence of annealing temperature on the tensile behavior for the MAA copolymer system as compared to the IBMA copolymer. In the interfacially crosslinked latex polymer system, there is competition between the interdiffusion and crosslinking mechanisms in determining the final mechanical strength of films during the annealing process.