Journal of Applied Polymer Science, Vol.62, No.1, 217-225, 1996
Synthesis of Tetrafunctional Epoxy-Resins and Their Modification with Polydimethylsiloxane for Electronic Application
High-performance tetrafunctional epoxy resins were synthesized by reacting a suitable tetraphenols which were obtained by the condensation of appropriate dialdehyde with phenol followed by epoxidation with a halohydrin. The structure of the synthesized tetraphenols was confirmed by infrared (IR), mass spectra (MS), and nuclear magnetic resonance (NMR) spectroscopy. Dispersed silicone rubbers were used to reduce the stress of the synthesized tetrafunctional epoxy resin cured with phenolic novolac resin for electronic encapsulation application. The dynamic viscoelastic properties and morphologies of neat rubber-modified epoxy networks were investigated. The thermal mechanical properties and moisture absorption of encapsulants formulated from the synthesized tetrafunctional epoxy resins were also studied. The results indicate that a low-stress, high glass transition temperature (T-g), and low-moisture-absorbing epoxy resin system was obtained fbr semiconductor encapsulation application.