Journal of Applied Polymer Science, Vol.62, No.10, 1605-1611, 1996
Application of Neural Networks to Meltblown Process-Control
Process modeling is essential for the control of optimization and an on-line prediction is very useful for process monitoring and quality control. Up to now, no satisfactory methods have been found to model an industrial meltblown process since it is of highly dimensional and nonlinear complexity. In this article, back-propagation neural networks (BPNNs) were investigated for modeling the meltblown process and on-line predicting the product specifications such as fiber diameter and web thickness. The feasibility of this application was successfully demonstrated by agreement of the prediction results from the BPNN to the actual measurements of a practical case. The network inputs included extruder temperature, die temperature, melt flow rate, air temperature at die, air pressure at die, and die-to-collector distance (DCD). The output of the fiber diameter was obtained by neural computing. The network training was based on 160 sets of the training samples and the trained network was tested with 70 sets of test samples which were different from the training data. This research is preliminary and of industrial significance and especially valuable for the optimal control of advanced meltblown processes.