- Previous Article
- Next Article
- Table of Contents
Journal of Applied Polymer Science, Vol.65, No.1, 197-207, 1997
Effect of Fiber Treatment on the Mechanical-Properties of LDPE-Henequen Cellulosic Fiber Composites
The degree of mechanical reinforcement that could be obtained by the introduction of henequen cellulosic fibers in a low-density polyethylene, LDPE, matrix was assessed experimentally. Composite materials of LDPE-henequen cellulosic fibers were prepared by mechanical mixing. The concentration of randomly oriented fibers in the composite ranged between 0 and 30% by volume. The tensile strength of these composite materials increased up to 50% compared to that of LDPE. There is also a noticeable increase in Young’s modulus for the composite materials that compares favorably with that of LDPE. As expected, the addition of the fibers decreases the ultimate strain values for the composite materials. The thermal behavior of the LDPE henequen cellulosic fibers materials, studied by differential scanning calorimetry, DSC, showed that the presence of the fibers does not affect the thermal behavior of the LDPE matrix; thus, the interaction between fiber and matrix is probably not very intimate. Preimpregnation of the cellulosic fibers in a LDPE-xylene solution and the use of a silane coupling agent results in a small increment in the mechanical properties of the composites, which is attributed to an improvement in the interface between the fibers and the matrix. The shear properties of the composites also increased with increasing fiber content and fiber surface treatment. It was also noted that the fiber surface treatment improves fiber dispersion in the matrix.