Science, Vol.336, No.6084, 1030-1033, 2012
Linking Crystallographic Model and Data Quality
In macromolecular x-ray crystallography, refinement R values measure the agreement between observed and calculated data. Analogously, R-merge values reporting on the agreement between multiple measurements of a given reflection are used to assess data quality. Here, we show that despite their widespread use, R-merge values are poorly suited for determining the high-resolution limit and that current standard protocols discard much useful data. We introduce a statistic that estimates the correlation of an observed data set with the underlying ( not measurable) true signal; this quantity, CC*, provides a single statistically valid guide for deciding which data are useful. CC* also can be used to assess model and data quality on the same scale, and this reveals when data quality is limiting model improvement.