화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.40, No.5, 1540-1555, 2002
Dynamic mean-variance portfolio selection with no-shorting constraints
This paper is concerned with mean-variance portfolio selection problems in continuous-time under the constraint that short-selling of stocks is prohibited. The problem is formulated as a stochastic optimal linear-quadratic (LQ) control problem. However, this LQ problem is not a conventional one in that the control (portfolio) is constrained to take nonnegative values due to the no-shorting restriction, and thereby the usual Riccati equation approach ( involving a completion of squares) does not apply directly. In addition, the corresponding Hamilton-Jacobi-Bellman (HJB) equation inherently has no smooth solution. To tackle these difficulties, a continuous function is constructed via two Riccati equations, and then it is shown that this function is a viscosity solution to the HJB equation. Solving these Riccati equations enables one to explicitly obtain the efficient frontier and efficient investment strategies for the original mean-variance problem. An example illustrating these results is also presented.