화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.47, No.2, 575-600, 2008
Reaching a consensus in a dynamically changing environment: A graphical approach
This paper presents new graph-theoretic results appropriate for the analysis of a variety of consensus problems cast in dynamically changing environments. The concepts of rooted, strongly rooted, and neighbor-shared are defined, and conditions are derived for compositions of sequences of directed graphs to be of these types. The graph of a stochastic matrix is defined, and it is shown that under certain conditions the graph of a Sarymsakov matrix and a rooted graph are one and the same. As an illustration of the use of the concepts developed in this paper, graph-theoretic conditions are obtained which address the convergence question for the leaderless version of the widely studied Vicsek consensus problem.