화학공학소재연구정보센터
Thin Solid Films, Vol.516, No.16, 5414-5418, 2008
Tribological properties of multilayer DLC/W-DLC films on Si
Multilayer films of diamond-like carbon (DLC) and tungsten-containing diamond-like carbon (W-DLC) films were deposited onto silicon wafers using radio frequency chemical vapor deposition (RFCVD) and a magnetron sputtering method. The W-DLC layer was deposited on the silicon wafer with less than 60 W magnetron output. The DLC layer was then deposited on the W-DLC layer. Surface morphology was investigated by atomic force microscopy and the film structure by transmission electron microscopy. Friction tests for multilayered films were performed in a nitrogen atmosphere at room temperature using a ball-on-disk tribometer. A conventional stainless steel ball was used for the test. The surface profiles seen by atomic force microscopy showed that round-shaped clusters of around 100 ran were observed in just the single W-DLC layer. These clusters were considered to be tungsten or tungsten-carbon composites. In the case of the DLC/W-DLC multilayered structure, the top DLC layer covered the W-DLC single layer and smoothed the surface of the W-DLC film. Friction tests demonstrated that the friction coefficient of the W-DLC single layer was above 0.6 and increased gradually as the number of cycle increased. The W-DLC films partially broke down during our measurements. However the DLC/W-DLC multilayer films showed stable friction properties and were observed for up to 100,000 cycles. Their friction coefficient was typically less than 0.1 at 10 cm/s rotating speed. The DLC/W-DLC multilayer films exhibited stable low friction properties in a long term test under a nitrogen atmosphere. (c) 2007 Elsevier B.V. All rights reserved.