Thin Solid Films, Vol.516, No.16, 5551-5556, 2008
Investigation of sub-nm ALD aluminum oxide films by plasma assisted etch-through
A new technique, called "plasma defect etching" (PDE), is proposed for studying the continuity of ultra-thin layers. The PDE technique utilizes the extremely high selectivity in the deep reactive ion etching (DRIE) process, thus achieving visualization of the defects in the layer, because etching of substrate happens only through voids and microholes of the layer. The etch profile generally reproduces the non-continuous structure of the layer. This PDE technique was applied for the investigation of thin, sub-nm aluminum oxide films grown on silicon wafers by atomic layer deposition (ALD) technique. Silicon substrate was etched by SF6 at cryogenic temperatures in an inductively coupled plasma (ICP) reactor, exploiting the extremely high ratio of silicon/aluminum oxide etch rates in fluorine plasmas. The surface morphology was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDE method shows that in the case of water as an oxidation precursor, separate islands of aluminum oxide form during the five first ALD cycles. On the other hand, the use of ozone precursor helps to oxidize silicon surface and facilitates growth of a uniform layer. (c) 2007 Elsevier B.V. All rights reserved.
Keywords:ultra-thin layer;atomic layer deposition;plasma etching;aluminum oxide;scanning electron microscopy;atomic force microscopy