Thin Solid Films, Vol.517, No.6, 2073-2078, 2009
Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films
Nanostructured ZnO films (undoped and Ga, Co, Mn doped) were exposed to oxygen (1-80 vol.%) at temperature range of 300-500 degrees C in order to reveal the ambience-temperature effect oil the electrical conductivity. The dominant effect of ambient influence via oxygen absorption was observed: the intensity of conductivity decrease was found to be proportional with temperature and tends to saturate with time. It is demonstrated that oxygen absorption occurs accordingly to diffusion law and the quantifying of oxygen diffusion was realized for different samples. It is revealed that the type of dopant affects the diffusion in ZnO and the tendency to increase the diffusion intensity with dopant content has been observed. After oxygen saturation the reversible effect of oxygen adsorption became dominant and contributed to the film's conductivity. Oxygen exposure undoped ZnO films revealed high sensitivity for oxygen content change in the ambience therefore they have been preceded further for gas sensor design and the detailed investigation of film's sensing properties has been carried out. (C) 2008 Elsevier B.V. All rights reserved.