화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.69, No.5, 845-855, 1998
Lignocellulosic polymer composite IV
Palm leaves as a woody lignocellulose, together with polystyrene, were used to produce composites. Chemithermal mechanical pulps (CTMP) were obtained from palm leaves under alkaline or acidic conditions. Appropriate bending strength was obtained from palm leaves and their CTMP pulps prepared under neutral or acidic conditions. The bulky fibers resulted from the alkaline pulps lead to composites of low bending strength. Thus, the cooking conditions of the palm leaves to obtain CTMP pulp play an important role on the properties of the composites. The nonbulky fibers lead to the formation of trapped pockets air as the number of the hydrogen bond are few. The presence of these air pockets allows the polystyrene solution to enter forming bonding between the interfaces. It is also found that the lower the density of the composites, the lower the internal bond strengths. The chemical constituents of the CTMP pulps, as well as the yields of the pulps, may influence the properties of the composites. Increasing the percentage of polystyrene in the composites, the mechanical properties increased. The water uptake and the swellability decreased until 20% polystyrene concentration and then levelled off. The thickness and density behaved the same. However, the type of substrate of the composite and the weight fraction are the important factors in determining the properties of the composites.