Thin Solid Films, Vol.519, No.1, 251-258, 2010
Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition
A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH4/BCl3/H-2 precursor mixture at a low temperature of 950 degrees C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 degrees C, 1700 degrees C, 1800 degrees C, 1900 degrees C and 2000 degrees C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B4C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B4C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Amorphous boron carbide;Annealing;Microstructure;Epitaxial growth;Chemical vapor deposition