Thin Solid Films, Vol.519, No.15, 4759-4764, 2011
Corrosion protection and formation mechanism of anodic coating on SiCp/Al metal matrix composite
The corrosion protection from sulfuric acid anodized coatings on 2024 aluminum and SiC particle reinforced 2024 aluminum metal matrix composite (SiCp/2024Al MMC) in 3.5 wt.% NaCl aqueous solution was investigated using electrochemical methods. The results show that the anodized coating on 2024Al provides good corrosion protection to 3.5 wt.% NaCl, and the anodized coating on the SiCp/2024Al MMC provides some corrosion protection, but it is not as effective as for 2024Al because non-uniformity in thickness and cavities present are associated with the SiC particulates. Cavities above SiC particles are the reason that the anodized coating on the MMC cannot be completely sealed by hot water as with anodic Al alloy. SiC particle anodizes at a significantly reduced rate compared with the adjacent Al matrix. This gives rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. It was found that the barrier layer of anodized Al MMC is not continuous, and it is composed primarily of the barrier layer of anodized Al matrix and a barrier-type SiO2 film on occluded SiC particles in the coating. A new formation mechanism of coating growth during anodizing of a SiCp/2024Al MMC was proposed. (C) 2011 Elsevier B.V. All rights reserved.