Thin Solid Films, Vol.520, No.9, 3472-3476, 2012
P-type transparent Ti-V oxides semiconductor thin film as a prospective material for transparent electronics
In this paper electrical and optical properties of mixed titanium and vanadium oxides (Ti-V oxides) thin films have been outlined. Thin films were deposited by sputtering of mosaic Ti-V target in reactive oxygen plasma using high energy magnetron sputtering process. From elemental analysis results, 19 at.% of vanadium was incorporated into thin films and X-ray diffraction investigations displayed their amorphous behavior. However, images obtained by the use of an atomic force microscope displayed a densely packed nanocrystalline structure. It has been found that V addition considerably improves the electrical conduction of prepared Ti-V oxide thin films as compared to undoped TiO2 and results in p-type electrical conduction. Resistivity of Ti-V oxides thin films was found at the order of 10(5)Omega cm. Optical measurements have shown the average transmission coefficient of about 73% in the visible spectral range and that the position of fundamental absorption edge has been shifted by 40 nm towards the longer wavelength as compared to the undoped TiO2. The results testified that the prepared Ti-V oxides thin films might be considered as a p-type transparent oxide semiconductors for future application in transparent electronics. (C) 2011 Elsevier B.V. All rights reserved.
Keywords:Titanium dioxide;Magnetron sputtering;Vanadium;Transparent electronics;Electrical conduction;Oxide semiconductor