화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.6, 2129-2134, November, 2012
Effects of sintering temperature and graphite addition on the mechanical properties of aluminum
E-mail:
The effects of different sintering temperatures, namely 400, 500 and 600 8C, on the mechanical properties of four aluminum-graphite alloys were reported. Different percentages of exfoliated graphite nanoplatelets particles (xGnP) were added to pure aluminum by using the powder metallurgy technique to produce Al-0 wt.%xGnP, Al-1 wt.%xGnP, Al-3 wt.%xGnP, and Al-5 wt.%xGnP. The density, fracture surface, compression, and hardness measurements were carried out to report the mechanical properties of the different aluminum-xGnP alloys. Combined data indicated that the Vickers hardness and compressive strength increase, on the other hand, the density decreases with increasing the graphite content in the Al alloys.
  1. Sherif EM, Park SM, J. Electrochem. Soc., 152(6), B205 (2005)
  2. Sherif EM, Park SM, Electrochim. Acta, 51(7), 1313 (2006)
  3. Latief FH, Sherif ESM, Almajid AA, Junaedi H, Journal of Analytical and Applied Pyrolysis., 92, 485 (2011)
  4. Sherif ESM, Almajid AA, Latif FH, Junaedi H, International Journal of Electrochemical Science., 6, 1085 (2011)
  5. Oso´ rio WR, Cheung N, Peixoto LC, Garcia A, International Journal of Electrochemical Science., 4, 820 (2009)
  6. Diggle W, Downie TC, Goulding C, Electrochimica Acta., 15, 1079 (1970)
  7. Pinto GM, Nayak J, Shetty AN, International Journal of Electrochemical Science., 4, 1452 (2009)
  8. Choh T, Oki T, Materials Science and Technology., 3, 378 (1987)
  9. Lei X, Ma J, Sun Y, International Journal of Electrochemical Science., 6, 537 (2011)
  10. Akhlaghi F, Pelaseyyed SA, Materials Science and Engineering A., 385, 258 (2004)
  11. Rohatgi PK, Asthana R, Das S, International Metals Review., 31, 115 (1986)
  12. Queipo P, Granda M, Santamaria R, Menendez R, Fuel, 83(11-12), 1625 (2004)
  13. Jha AK, Prasad SV, Upadhyaya GS, Powder Metallurgy., 32, 309 (1989)
  14. Dolata-Grosz A, Sleziona J, Formanek B, Journal of Materials Processing Technology., 175, 192 (2006)
  15. Fogagnolo JB, Robert MH, Torralba JM, Materials Science and Engineering A., 426, 85 (2006)
  16. RazaviHesabi Z, Simchi A, SeyedReihani SM, Materials Science and Engineering A., 428, 159 (2006)
  17. Song SH, Jeong HK, Kang YG, J. Ind. Eng. Chem., 16(6), 1059 (2010)
  18. Goussous S, Xu W, Wu X, Xia K, Composites Science and Technology., 69, 1997 (2009)
  19. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
  20. Zhou DM, Wang YJ, Wang HW, Wang SQ, Cheng JM, J. Hazard. Mater., 174(1-3), 34 (2010)
  21. Machida M, Mochimaru T, Tatsumoto H, Carbon., 44, 2681 (2006)
  22. Biswas S, Drzal LT, Nano Letters., 9, 167 (2009)
  23. Min KH, Kang SP, Kim DG, Kim YD, Journal of Alloys and Compounds., 400, 150 (2005)
  24. German RM, Sintering theory and practice, New York, Wiley (1996)
  25. Callister William D, Retwisch David G, Materials Science and Engineering: An Introduction, eighth ed., John Wiley & Sons (2011)
  26. Yeoh A, Persad C, Eliezer Z, Scripta Materialia., 37(3), 271 (1997)
  27. Sevik H, Kurnaz SC, Materials and Design., 27, 676 (2006)
  28. Dieter GE, Mechanical Metallurgy, third ed., McGraw-Hill (1976)
  29. Torralba JM, da Costa CE, Velasco F, Journal of Materials Processing Technology., 133, 203 (2003)
  30. Kaczmar JW, Pietrzak K, Wlosinski W, Journal of Materials Processing Technology., 106, 58 (2000)
  31. Kok M, Journal of Materials Processing Technology., 161, 381 (2005)
  32. Kang YC, Chan SLI, Mater. Chem. Phys., 85(2-3), 438 (2004)