Journal of Industrial and Engineering Chemistry, Vol.18, No.6, 2129-2134, November, 2012
Effects of sintering temperature and graphite addition on the mechanical properties of aluminum
E-mail:
The effects of different sintering temperatures, namely 400, 500 and 600 8C, on the mechanical properties of four aluminum-graphite alloys were reported. Different percentages of exfoliated graphite nanoplatelets particles (xGnP) were added to pure aluminum by using the powder metallurgy technique to produce Al-0 wt.%xGnP, Al-1 wt.%xGnP, Al-3 wt.%xGnP, and Al-5 wt.%xGnP. The density, fracture surface, compression, and hardness measurements were carried out to report the mechanical properties of the different aluminum-xGnP alloys. Combined data indicated that the Vickers hardness and compressive strength increase, on the other hand, the density decreases with increasing the graphite content in the Al alloys.
Keywords:Aluminum alloys;Exfoliated graphite;Mechanical properties;Nanoparticles;Sintering temperature
- Sherif EM, Park SM, J. Electrochem. Soc., 152(6), B205 (2005)
- Sherif EM, Park SM, Electrochim. Acta, 51(7), 1313 (2006)
- Latief FH, Sherif ESM, Almajid AA, Junaedi H, Journal of Analytical and Applied Pyrolysis., 92, 485 (2011)
- Sherif ESM, Almajid AA, Latif FH, Junaedi H, International Journal of Electrochemical Science., 6, 1085 (2011)
- Oso´ rio WR, Cheung N, Peixoto LC, Garcia A, International Journal of Electrochemical Science., 4, 820 (2009)
- Diggle W, Downie TC, Goulding C, Electrochimica Acta., 15, 1079 (1970)
- Pinto GM, Nayak J, Shetty AN, International Journal of Electrochemical Science., 4, 1452 (2009)
- Choh T, Oki T, Materials Science and Technology., 3, 378 (1987)
- Lei X, Ma J, Sun Y, International Journal of Electrochemical Science., 6, 537 (2011)
- Akhlaghi F, Pelaseyyed SA, Materials Science and Engineering A., 385, 258 (2004)
- Rohatgi PK, Asthana R, Das S, International Metals Review., 31, 115 (1986)
- Queipo P, Granda M, Santamaria R, Menendez R, Fuel, 83(11-12), 1625 (2004)
- Jha AK, Prasad SV, Upadhyaya GS, Powder Metallurgy., 32, 309 (1989)
- Dolata-Grosz A, Sleziona J, Formanek B, Journal of Materials Processing Technology., 175, 192 (2006)
- Fogagnolo JB, Robert MH, Torralba JM, Materials Science and Engineering A., 426, 85 (2006)
- RazaviHesabi Z, Simchi A, SeyedReihani SM, Materials Science and Engineering A., 428, 159 (2006)
- Song SH, Jeong HK, Kang YG, J. Ind. Eng. Chem., 16(6), 1059 (2010)
- Goussous S, Xu W, Wu X, Xia K, Composites Science and Technology., 69, 1997 (2009)
- Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
- Zhou DM, Wang YJ, Wang HW, Wang SQ, Cheng JM, J. Hazard. Mater., 174(1-3), 34 (2010)
- Machida M, Mochimaru T, Tatsumoto H, Carbon., 44, 2681 (2006)
- Biswas S, Drzal LT, Nano Letters., 9, 167 (2009)
- Min KH, Kang SP, Kim DG, Kim YD, Journal of Alloys and Compounds., 400, 150 (2005)
- German RM, Sintering theory and practice, New York, Wiley (1996)
- Callister William D, Retwisch David G, Materials Science and Engineering: An Introduction, eighth ed., John Wiley & Sons (2011)
- Yeoh A, Persad C, Eliezer Z, Scripta Materialia., 37(3), 271 (1997)
- Sevik H, Kurnaz SC, Materials and Design., 27, 676 (2006)
- Dieter GE, Mechanical Metallurgy, third ed., McGraw-Hill (1976)
- Torralba JM, da Costa CE, Velasco F, Journal of Materials Processing Technology., 133, 203 (2003)
- Kaczmar JW, Pietrzak K, Wlosinski W, Journal of Materials Processing Technology., 106, 58 (2000)
- Kok M, Journal of Materials Processing Technology., 161, 381 (2005)
- Kang YC, Chan SLI, Mater. Chem. Phys., 85(2-3), 438 (2004)