화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.11, 1156-1162, November, 2012
Amino Acid-Modified Bioreducible Poly(amidoamine) Dendrimers: Synthesis, Characterization and In vitro Evaluation
E-mail:,
Poly(amidoamine) (PAMAM) dendrimers are synthetic polymers commonly used as carriers in gene and drug delivery. PAMAMs have the ability to transfect DNA, but their transfection efficiency is currently insufficient for clinical use. Here, we demonstrate the synthesis and evaluation of cationic dendrimers consisting of a cystamine core PAMAM generation 3 (cPAM G3) and amino acids. Introduction of histidine (His) and arginine (Arg) residues to cPAM G3 resulted in high transfection efficiency and low cytotoxicity. cPAM G3-His-Arg formed stable polyplexes at a weight ratio of 6:1, and the mean polyplex diameter was 99.03±1.68 nm. Nano-sized polyplexes increased in diameter up to 132.93±1.79 nm when treated with a reducing agent, dithiothreitol (DTT). cPAM G3-His-Arg showed much higher transfection efficiency than native cPAM G3 and polyethylenimine (PEI, 25KD). In addition, cPAM G3-His-Arg displayed negligible toxicity, even at high polymer concentrations. Finally, confocal laser microscopy results showed that cPAM G3-His-Arg effectively internalized plasmid DNA into the cells. Therefore, we believe that cPAM G3-His-Arg could be a promising bioreducible vector for non-viral gene delivery with high gene transfection efficiency and low cytotoxicity.
  1. Tomalia DA, Frechet JMJ, J. Polym. Sci. A: Polym. Chem., 40(16), 2719 (2002)
  2. Tomalia A, Baker DH, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P, Polym. J., 17, 177 (1985)
  3. Cloninger MJ, Curr. Opin. Chem. Biol., 6, 742 (2002)
  4. Lee CC, MacKay JA, Frechet JMJ, Szoka FC, Nat. Biotechnol., 23, 1517 (2005)
  5. Venditto VJ, Regino CAS, Brechbiel MW, Mol.Pharm., 2, 302 (2005)
  6. Wu GY, Wu CH, J. Biol. Chem., 262, 4429 (1987)
  7. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP, Proc. Natl. Acad. Sci. U.S.A., 92, 7297 (1995)
  8. Pouton CW, Seymour LW, Adv. Drug Deliv. Rev., 46, 187 (2001)
  9. Schmidt-Wolf GD, Schmidt-Wolf IGH, Trends Mol.Med., 9, 67 (2003)
  10. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS, J. Control. Release., 99, 445 (2004)
  11. Kono K, Akiyama H, Takahashi T, Takagishi T, Harada A, Bioconjug. Chem., 16, 208 (2005)
  12. Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JR, Chem. Commun., 5739 (2005)
  13. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM, Macromolecules, 35(9), 3456 (2002)
  14. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T, Bioconjug. Chem., 16, 785 (2005)
  15. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H, Bioconjug. Chem., 18, 2054 (2007)
  16. Yu GS, Bae YM, Choi H, Kong B, Choi IS, Choi IS, Bioconjug. Chem., 22, 1046 (2011)
  17. Gosselin MA, Guo WJ, Lee R J, Bioconjug. Chem., 12, 989 (2001)
  18. Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K, J. Am. Chem. Soc., 126(8), 2355 (2004)
  19. Kim TI, Ou M, Lee M, Kim SW, Biomaterials., 30, 658 (2009)
  20. Peng Q, Zhong ZL, Zhuo RX, Bioconjug. Chem., 19, 499 (2008)
  21. Lee Y, Mo H, Koo H, Park JY, Cho MY, Jin GW, Park JS, Bioconjug. Chem., 18, 13 (2007)
  22. Mok H, Park TG, Biopolymers., 89, 881 (2008)
  23. Won YW, Kim HA, Lee M, Kim YH, Mol. Ther., 18, 734 (2010)
  24. Kakizawa Y, Harada A, Kataoka K, Biomacromolecules, 2(2), 491 (2001)
  25. Mok H, Park JW, Park TG, Bioconjug. Chem., 18, 1483 (2007)
  26. Lin C, Zhong ZY, Lok MC, Jiang XL, Hennink WE, Feijen J, Engbersen JFJ, Bioconjug. Chem., 18, 138 (2007)
  27. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Mol. Ther., 11, 990 (2005)