화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.6, 756-760, November, 2012
KOH 활성화가 슈퍼커패시터용 콜타르 피치 활성탄소의 전기화학적 성능에 미치는 영향
Influence of KOH Activation on Electrochemical Performance of Coal Tar Pitch-based Activated Carbons for Supercapacitor
E-mail:
초록
본 연구에서는 콜타르 피치를 출발물질로 하여 KOH로 활성화시킨 슈퍼커패시터용 전극소재를 제작하였다. 콜타르 피치와 KOH의 활성화 비율을 1:4로 설정한 후 활성화 온도를 600~900 ℃까지 100 ℃ 단위로 4종류의 활성탄소를 제조한 후 피치계 활성탄소의 전기화학적 성능에 대한 KOH 활성화 온도의 영향에 관하여 고찰하였다. 또한 활성탄소의 형태학적 특성 변화를 흡착등온선과 FE-SEM을 통하여 분석하였다. 실험결과, 활성탄소의 커패시턴스는 전극 내 내부저항의 감소에 따라 증가하였는데, 이는 활성화 온도가 증가함에 따라 활성탄소 내 미세기공이 발달했기 때문이라 판단된다.
In this work, the coal tar pitch-based activated carbons (ACs) were prepared by KOH activation for electrode materials of supercapacitor. The effects of activation temperature on electrochemical performance of the ACs were investigated with cyclic voltammogram (CV) measurement. The textural and morphological properties of the ACs were measured by adsorption isotherms and field emission scanning electron microscope (FE-SEM) analyses, respectively. The experimental results indicated that the specific capacitance of the ACs increased with developing the micropore volume by activation temperature. As a result the specific capacitance of the ACs increased, owing to the development of micro pore volume of the ACs.
  1. Kim KS, Park SJ, Synthetic Metals., 161, 1966 (2011)
  2. Kim KS, Park SJ, Electrochim. Acta, 56(27), 10130 (2011)
  3. Seo MK, Park SJ, Curr. Appl. Phys., 10(1), 241 (2010)
  4. Sun JK, Um EH, Lee CT, Appl. Chem. Eng., 21(1), 11 (2010)
  5. Conway BE, J. Electrochem. Soc., 138, 1539 (1991)
  6. Conway BE, Electrochemical Supercapacitors, Plenum Publishing, New York (1999)
  7. Park SJ, Kim KD, Polym.(Korea), 22(6), 994 (1998)
  8. Tanahashi I, Yoshida A, Nishino A, J. Electrochem. Soc., 137, 3952 (1990)
  9. Tanahashi I, Yoshida A, Nishino A, Carbon., 28, 477 (1990)
  10. Zheng JP, Jow TR, J. Electrochem. Soc., 142(1), L6 (1995)
  11. Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
  12. Jow TR, Zheng JP, J. Electrochem. Soc., 145(1), 49 (1998)
  13. Petrova B, Tsyntsarski B, Budinova T, Petrov N, Ania CO, Parra JB, Mladenov M, Tzvetkov P, Fuel Process. Technol., 91(11), 1710 (2010)
  14. Yang KS, Kim BH, Lee WJ, Polym. Sci. Technol., 21, 2 (2010)
  15. Zheng H, Kim MS, Carbon Lett., 12, 243 (2011)
  16. Weunerberg AN, O’Grady TM, U.S. Patent 4,082,694 (1978)
  17. Schafer HN, U.S. Patent 4,039,473 (1977)
  18. Yuan H, Shin DH, Kim B, Lee CJ, Carbon Lett., 12, 218 (2011)
  19. Roh KC, Park JB, Lee CT, Park CW, J. Ind. Eng.Chem., 14, 2 (2008)
  20. El-Hendawy ANA, Appl. Surf. Sci., 255(6), 3723 (2009)
  21. Bai BC, Kim JG, Naik M, Im JS, Lee YS, Carbon Lett., 12, 171 (2011)
  22. Kim K, Park SJ, Carbon Lett., 13, 51 (2012)
  23. Kim KS, Park SJ, Electrochim. Acta, 56(3), 1629 (2011)
  24. Lee JH, Jung HT, Polym. Sci. Technol., 18, 6 (2007)