화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.6, 1076-1081, December, 2012
라텍스 개질 콘크리트용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성
Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Latex Modified Concrete
E-mail:
초록
라텍스 개질 콘크리트의 혼화용 라텍스를 개발할 목적으로 carboxylated styrene butadiene 라텍스를 이단계 유화중 합법으로 제조하고 콘크리트에 적용하는 실험을 수행하였다. 음이온 유화제로는 sodium dodecylbenzene sulfonate와 sodium salt of lauryl sulfate를 선정하였고, 라텍스 안정제로는 nonylphenoxy poly(ethyleneoxy) ethanol 계열의 동족체들(n=10, 20, 40)을, 그리고 potassium persulfate와 sodium bisulfite를 redox 개시제로, Na2HPO4와 K2CO3를 전해질로 각각 사용하였다. 중합안정성에 대한 음이온 유화제의 종류와 사용량의 영향 및 입자크기의 전해질 농도 의존성을 실험적으로 고찰하여 LMC용 라텍스 제조에 적합한 중합처방을 제시하였다. 이 중합처방으로 제조한 라텍스의 LMC 용도에 대한 적용성을 시험한 결과, 슬럼프와 공기량은 한국도로공사의 품질기준을 충족하며, 역학적 물성시험 결과에서는 28일간 경화시킨 시편의 압축강도와 휨강도가 품질기준보다 각각 39.6, 87.3% 더 높은 증진효과가 발현됨을 확인하였다.
For the purpose of development of the latex suitable for latex modified concrete, experimental researches on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization and application to concrete were performed. Sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate were selected as anionic emulsifiers, and nonylphenoxy poly(ethyleneoxy) ethanols (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were used as redox initiator, besides Na2HPO4 and K2CO3 as electrolytes. Polymerization recipe of latex suitable for latex modified concrete were suggested from the experimental researches on the effects of anionic emulsifiers and their concentration on the polymerization stability, and the effect of electrolytes concentration on the particle size of latex. Physical properties, such as slump, air contents, compressive and flexural strength, of latex prepared by suggested polymerization recipe were examined. The experimental results showed that latex modified concrete satisfied the quality standards in slump and air contents. Furthermore, it was turned out that the compressive and the flexural strength of latex modified concrete with 28 days curing time showed appreciably improvements.
  1. Manson JA, ACI Pubrication., SP-69 (1981)
  2. Depuy GW, Construction Repair., 10(2), 63 (1996)
  3. Ohama Y, “Handbook of Polymer-Modified Concrete and Mortars Properties and Process Technology,” Noyes Publications (1995)
  4. Shindoh T, Proceedings of the Japan Concrete Institute., 13(1), 179 (1991)
  5. Ohtsuka Y, Kawaguchi H, Sugi Y, J. Appl. Polym. Sci., 26, 1637 (1981)
  6. Guillaume J, Pichot C, Guillot J, J. Polym.Sci., 26, 1937 (1988)
  7. Okubo M, Yamada A, Shibao S, Nakamae K, Matsumoto T, J.Appl. Polym. Sci., 26, 1675 (1981)
  8. Lee HJ, Park JS, Lee SR, Kim JM, Chang SM, Korean Chem. Eng. Res., 47(4), 470 (2009)
  9. Liu LJ, Krieger IM, J. Polym. Sci.: Polym. Chemistry. Ed., 19, 3013 (1981)
  10. Ceska GW, J. Appl. Polym. Sci., 18, 427 (1974)
  11. Juang MSD, Krieger IM, J. Polym. Sci.: Polym.Chem. Ed., 14, 2089 (1976)
  12. Okigura KG, Suzuki RI, Motoyama TH, Muroi SI, “Emulsion-Latex Handbook, ” Daisan Pub. Co., Japan, 42 (1975)
  13. Pham VH, Lee YH, Lee DJ, Chung JS, Korean J. Chem. Eng., 26(6), 1585 (2009)
  14. Okigura KG, Suzuki RI, Motoyama TH, Muroi SI, “Emulsion-Latex Handbook,” Daisan Pub. Co., Japan, 83 (1975)
  15. Lee BK, “Preparation Method of Carboxylated Styrene Butadiene Synthetic Latex for Latex Modified Concrete, ” Korea Patent No. 10-0871318(2008. 11. 25).