화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.12, 1300-1306, December, 2012
Compatibility and Physical Properties of Poly(lactic acid)/Poly(ethylene terephthalate glycol) Blends
E-mail:
Blends of poly(lactic acid) (PLA) and poly(ethylene terephthalate glycol) (PETG) of various compositions were prepared by melt compounding and their compatibilities, physical properties, and isothermal crystallization behaviors were investigated. The calculated solubility parameters of PETG are similar to those of PLA. The interaction parameter between PLA and PETG was derived from the Flory-Huggins theory and predicted that PLA and PETG are miscible when PETG contents are below 22 wt%. In accordance with this result, the tan δ peak and glass transition temperatures of blends determined from dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) showed a single peak at PETG contents lower than 22 wt%. Tensile test results showed that the elongation at the break of blends increased with an increase in PETG content. DSC and isothermal crystallization results showed that PETG accelerates the crystallization rate of PLA at PETG contents lower than 22 wt%, indicating that PETG acts as a nucleation agent in the crystallization of PLA. Wide angle X-ray diffraction results (WAXD) showed that the crystalline structure of PLA is not affected by the incorporation of PETG.
  1. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  2. Auras R, Harte B, Selke S, Macromol. Biosci., 4, 835 (2004)
  3. Carrasco F, Pages P, Gamez-Perez J, Santana OO, Maspoch ML, Polym. Degrad. Stab., 95, 116 (2010)
  4. Yan SF, Yin JB, Yang Y, Dai ZZ, Ma J, Chen XS, Polymer, 48(6), 1688 (2007)
  5. Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K, Macromolecules, 35(8), 3104 (2002)
  6. Yun YS, Kwon HI, Bak H, Lee EJ, Yoon JS, Jin HJ, Macromol. Res., 18(9), 828 (2010)
  7. Pan H, Qiu ZB, Macromolecules, 43(3), 1499 (2010)
  8. Hiljanen-Vainio M, Orava PA, Seppala JV, J. Biomed.Mater. Res., 34, 39 (1997)
  9. Kylma J, Seppala JV, Macromolecules, 30(10), 2876 (1997)
  10. Kawasaki N, Nakayama A, Maeda Y, Hayashi K, Yamamoto N, Aiba S, Macromol. Chem. Phys., 199, 2445 (1998)
  11. Li WD, Zeng JB, Li YD, Wang XL, Wang YZ, J. Polym. Sci. A: Polym. Chem., 47(21), 5898 (2009)
  12. Tsuji H, Horikawa G, Polym. Int., 56, 258 (2007)
  13. Sheth M, Kumar RA, Dave V, Gross RA, Mccarthy SP, J. Appl. Polym. Sci., 66(8), 1495 (1997)
  14. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M, AAPG Bull., 7, 2128 (2006)
  15. Jiang L, Wolcott MP, Zhang JW, Biomacromolecules, 7(1), 199 (2006)
  16. Park SB, Hwang SY, Moon CW, Im SS, Yoo ES, Macromol. Res., 18(5), 463 (2010)
  17. Saunders KJ, Organic Polymer Chemistry: An Introduction to the Organic Chemistry of Adhesives, Chapman and Hall, London (1988)
  18. Ranade A, D’Souza N, Thellen C, Ratto JA, Polym.Int., 54, 875 (2005)
  19. Flory PJ, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, New York (1953)
  20. Robeson LM, Polymer Blends: A Comprehensive Review, Hanser Gardner Publications, Cincinnati (2007)
  21. Hildebrand JH, Scott RL, The Solubility of Nonelectrolytes, 3rd ed., Reinhold, New York (1950)
  22. Hoffman JD, Weeks JJ, J. Res. Natl. Bur. Stand A., 66, 13 (1962)
  23. Tsuji H, Ikada Y, Polymer, 36(14), 2709 (1995)
  24. Hoffman JD, Miller RL, Marand H, Roitman DB, Macromolecules., 25, 2221 (1992)
  25. Nishi T, Wang TT, Macromolecules., 8, 909 (1975)
  26. Kattan M, Dargent E, Ledru J, Grenet J, J. Appl. Polym. Sci., 81(14), 3405 (2001)
  27. Fisher EW, Sterzel HJ, Wegner G, Polymer., 251, 980 (1973)
  28. Avrami M, J. Chem. Phys., 9, 177 (1941)
  29. Avrami M, J. Chem. Phys., 7, 1193 (1939)
  30. Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ, Macromol. Mater. Eng., 289, 910 (2004)