화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.6, 539-545, December, 2012
Electron Withdrawing Group을 함유한 Polythiophene의 합성과 특성에 관한 연구
Synthesis and Characteristic of Polythiophene Containing Electron Withdrawing Group
E-mail:
초록
전자를 끌어당기는 benzotriazole을 vinylene으로 thiophene과 연결한 3-(2-benzo-triazolovinyl)thiophene (BVT)을 합성하고, FT-IR 및 1H-NMR, 13C-NMR, 2D hetero-cosy spectra로 구조분석을 하였다. 합성한 BVT와 3-octylthiophene (OT)을 공중합 하였다. 공중합체들은 수평균 분자량 12000 (PDI 2.67)과 15000 (PDI 2.55)을 나타내었으며, THF, TCE와 chloroform 등의 유기용매에 잘 용해되었다. 공중합체들의 BVT와 OT의 공중합된 비율은 1H-NMR spectra에 의하여 BVT : OT = 1 : 1.8과 1 : 2.8 (mol/mol)로 확인되었다. 파장 470 nm와 465 nm에서 UV-vis 최대 흡수를 나타내었고, photoluminescence(PL)는 각각 λmax = 662 nm와 641 nm로 나타나 적색계로 관찰되었다. 공중합체의 band gap은 각각 1.96 eV, 2.02 eV로 poly(3-octylthiophene)보다 더 증가하였다. 또한, poly(3-octylthiophene)에 비해서 HOMO 에너지 준위는 모두 낮아졌으나, LUMO 에너지 준위는 모두 높아졌다.
3-(2-benzotriazolovinyl)thiophene (BVT) was synthesized by the connection of the thiophene with the electron-withdrawing group, benzotriazole, through the vinylene. Its structure was confirmed by FT-IR, 1H-NMR, 13C-NMR and 2D hetero-cosy spectroscopy. Both BVT and 3-octylthiophene (OT) were copolymerized and showed an average molecular weight of 12000 (PDI 2.67) and 15000 (PDI 2.55), respectively. The copolymers were dissolved in the organic solvent such as chloroform, THF, TCE, etc. The mole ratios of BVT and OT in the synthesized copolymers were confirmed as 1 : 1.8 and 1 : 2.8 from 1H-NMR spectra. The UV-vis maximum absorption of copolymers appeared at the wavelength of 470 nm and 465 nm and the photoluminescence at λmax = 662 nm and 641 nm correspond to red-orange light. The band gaps of copolymers at 1.96 eV and 2.02 eV were found to be higher than those of poly (3- octylthiophene). The HOMO energy levels of the copolymers decreased overall in comparison with those of poly(3-octylthiophene), but the overall LUMO energy level increased.
  1. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ, Chem. Rev., 105(4), 1491 (2005)
  2. Yamamoto T, NPG Asia Mater., 2, 54 (2010)
  3. Onoda M, Tada K, Thin Solid Films., 438, 187 (2003)
  4. Nie G, Guo Q, Zhang Y, Zhang S, Eur Polymer J., 45, 2600 (2009)
  5. Perepichka IF, Perepichka DF, Meng H, Wudl F, Adv. Mater., 17(19), 2281 (2005)
  6. Ahn SH, Czae MZ, Kim ER, Lee H, Han SH, Noh J, Hara M, Macromolecules, 34(8), 2522 (2001)
  7. Kim JH, Dissertation MS, Korea Polytechnic University, Siheung, Korea (2010)
  8. Ahn TK, Choi BS, Ahn SH, Han SH, Lee HW, Synthetic Metals., 117, 219 (2001)
  9. Wi SH, Dissertation MS, Korea Polytechnic University, Siheung, Korea (2012)
  10. Ahn SH, Dissertation MS, Han-Yang University, Seoul, Korea (2000)
  11. Schroder L, Schmitz C, Bachert P, J. Magn. Reson., 174, 68 (2005)
  12. Lee HS, Kim JH, Polymer Science and Technology., 18, 5 (2007)
  13. Shin W, Park JB, Park SJ, Jo MY, Suh HS, Kim JH, J, Korean Ind. Eng. Chem., 23, 15 (2011)