Applied Chemistry for Engineering, Vol.23, No.6, 608-613, December, 2012
유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해
Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma
E-mail:
초록
유전체 배리어 방전 플라즈마를 모사 농산물 저장시설(1.0 m3)의 에틸렌 제거에 적용하였다. 에틸렌이 포함된 공기를 플라즈마 반응기에 유입시켜 처리한 후 다시 농산물 저장시설로 재순환하는 방식으로 시험을 수행하였다. 주요 운전 변수는 방전전력, 순환기체 유량, 초기 에틸렌 농도 및 처리시간이었다. 에틸렌의 분해속도는 주로 방전전력과 처리 시간에 의해 결정되었다. 다른 조건을 일정하게 유지한 상태에서 플라즈마 반응기 후단에 이산화망간 오존분해 촉매를 설치했을 경우 오존분해 촉매가 없을 때 보다 에틸렌 제거속도가 더 빨랐는데, 이 결과는 플라즈마 반응기에서 배출되는 오존이 농산물 저장시설에 유입ㆍ축적되어 에틸렌을 추가적으로 분해했기 때문이다. 에틸렌 초기 농도 50 ppm을 기준으로 하면 이를 완전히 분해하기 위한 에너지 요구량은 약 60 kJ이었다.
Dielectric barrier discharge plasma reactor was applied to the removal of ethylene from a simulated storage facility (1.0 m3) of fruits and vegetables. The system operated in a closed-loop mode by feeding the contaminated gas to the plasma reactor and recirculating the treated gas back to the storage facility. The experiments were carried out with parameters such as discharge
power, circulation flow rate, initial ethylene concentration and treatment time. The rate of ethylene decomposition was mainly controlled by the discharge power and the treatment time. With the other conditions kept constant, the ethylene decomposition rate in the presence of the manganese oxide ozone control catalyst installed downstream from the plasma reactor was lower than that in the absence of it. The suggests that unreacted ozone from the plasma reactor accumulated in the storage facility where it additionally decomposed ethylene. On the basis of an initial ethylene concentration of 50 ppm, the energy requirement for completing the decomposition was about 60 kJ.
- Kim HC, Bae KS, Bae JH, Jeon KS, Hong JU, J.Bio-Environment Control., 15, 61 (2006)
- Vidrih R, Simcic M, Hribar J, Plestenjak A, Acta Horticulturae., 368, 652 (1994)
- Matsui T, Kitagawa H, J. Japan Soc. Hort. Sci., 57, 697 (1989)
- Matsuo T, Itoo S, Ben-Arie R, J. Japan Soc. Hort. Sci., 60, 437 (1991)
- Jang KI, Lee JH, Kim KY, Jeong HS, Lee HB, J. Korean Soc. Food Sci. Nutr., 35, 1237 (2006)
- Skog LJ, Chu L, Canadian J. Plant Sci., 81, 773 (2001)
- Wang CH, Wu Y, Li GF, J. Electrostat., 66, 71 (2008)
- Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B, Fuel Process. Technol., 83(1-3), 101 (2003)
- Vandenbroucke AM, Morent R, Geyter ND, Leys C, J.Hazard. Mater., 195, 30 (2011)
- Mok YS, Jo JO, Whitehead JC, Chem. Eng. J., 142(1), 56 (2008)
- National Institute of Standards and Technology (NIST) Chemistry WebBook, http://webbook.nist.gov/chemistry/.
- National Institute of Standards and Technology (NIST) Chemical Kinetics Database: Version 2Q98 (1998)
- Neeb P, Horie O, Moortgat GK, J. Phys. Chem. A, 102(34), 6778 (1998)